应用电子技术毕业设计论文火灾自动报警系统.doc

上传人:sccc 文档编号:4850923 上传时间:2023-05-19 格式:DOC 页数:49 大小:540.01KB
返回 下载 相关 举报
应用电子技术毕业设计论文火灾自动报警系统.doc_第1页
第1页 / 共49页
应用电子技术毕业设计论文火灾自动报警系统.doc_第2页
第2页 / 共49页
应用电子技术毕业设计论文火灾自动报警系统.doc_第3页
第3页 / 共49页
应用电子技术毕业设计论文火灾自动报警系统.doc_第4页
第4页 / 共49页
应用电子技术毕业设计论文火灾自动报警系统.doc_第5页
第5页 / 共49页
点击查看更多>>
资源描述

《应用电子技术毕业设计论文火灾自动报警系统.doc》由会员分享,可在线阅读,更多相关《应用电子技术毕业设计论文火灾自动报警系统.doc(49页珍藏版)》请在三一办公上搜索。

1、XXXX职业技术学院毕业论文2008级毕业设计(论文)报告专业名称: 应用电子技术 设计课题: 火灾自动报警系统 导师姓名: 学生姓名: 班 级: 二班 学 号: 2010年 11月 25日毕 业 设 计 任 务 书毕业设计题目: 火灾自动报警系统 专业:应用电子技术 姓名: 毕业设计的内容要求:通过对烟浓度、温度等火灾参数的感知,采用单片机进行信号处理,使用智能识别算法实现对火灾的检测,并在监测到火情信息后,产生声光报警信号,同时打开联动消防装置。其具体设计要求如下:(1)要求所使用的传感器灵敏度高,可靠性好,能时刻准确监测宾馆现场的火灾参数。(2)要求选用的单片机能对信号做出准确的分析处理

2、,并传到声光报警装置。当发生火灾时,首先起火房间会发出声音报警;同时,起火楼层总服务台处也会发生声音报警并会在LED显示屏上显示相应的着火房间。(3)设计备用电源,当发生火灾时,会自动切断宾馆用电电路,转换为备用电源供电。(4)要求单片机监测到准确的火灾信息后,能自动打开联动消防装置,对火灾进行消防。指导教师(签名): 系主任: 年 月 日毕业设计开题报告一、课题设计(论文)目的及意义 宾馆火灾自动报警系统在生产生活中有着相当重要的地位。因此,宾馆火灾自动报警系统的研究和设计也是当前相当热门的项目课题。本课题研究的目的是:能综合运用所学基础理论、基本知识、基本技能;分析、解决本专业实际问题的能

3、力;全面分析、考虑问题的思维方式、工作方法;计算、绘图和编写设计文件的能力以及实际工作能力、社会活动能力。二、课题设计(论文)提纲 由于该系统主要用于多点集中检测报警,故能对受监测点进行巡回检测。为防止误报警,当检测到某房间有火情时,该系统应该延时3秒钟后再检测一次,若确有火情方可报警,并用数字指示出发生火灾地点。该系统的传感器选用开关量传感器。系统终端部分选用音响报警电路及数码显示电路。三、课题设计(论文)思路、方法及进度安排思路:本文在该系统的研究和设计中主要作了系统硬件设计和系统软件设计两项主要工作,一二章主要对火灾自动报警系统的基本状况作了简要分析。方法及进度安排:通过搜集资料,参考文

4、献,反复的硬件调试,基本完成各模块的性能要求。在研究过程中系统的部分模块属电子系统中常用模块的可以直接采用,但需要结合连接电路进行适当调试,以达到最佳效果。四、课题设计(论文)参考文献1 杨风和.火灾自动报警消防系统.天津:天津大学出版社,19992 黄继昌.实用报警电路.北京:人民邮电出版社,20053 徐爱卿.单片微型计算机应用和开发系统.北京: 北京航空航天大学出版社,2006 4 何为民.低功耗单片微机系统设计. 北京:北京航空航天大学出版社,19935 陈汝全等.单片机实用技术.北京:电子工业出版社,19926 何立民.单片机应用技术选编. 北京:北京航空航天大学出版社,19937

5、何立民.单片机应用技术选编. 北京:北京航空航天大学出版社,19968 张毅刚.单片微机原理及应用.西安电子科技大学出版社,1994目 录第一章 绪论81.1本论文的研究背景81.2现有火灾自动报警系统比较81.2.1 传统火灾探测技术91.2.2 智能火灾探测技术101.3 火灾自动报警系统的发展与现状10第二章 系统原理及总体方案设计122.1 系统原理122.2 系统设计122.2.1 系统各模块的设计122.2.2 系统总构架的设计13第三章 系统硬件设计153.1 硬件组成153.2 烟雾信号采集模块153.2.1 离子感烟传感器工作原理163.2.2 UD02 型离子感烟传感器19

6、3.2.3 离子感烟传感器专用集成电路DQ-295213.2.4 离子感烟火灾报警器应用电路233.3单片机控制中心243.3.1 时钟电路和工作方式243.3.2 中断系统253.4 声光报警模块283.4.1 声音报警电路283.4.2 LED显示器293.5 接口芯片8243303.6 电源系统设计323.7 消防联动装置33第四章 系统软件设计354.1 主程序设计354.2 读数子程序364.3 核对子程序364.4 查找报警点子程序374.5 显示及报警子程序384.6 联动消防404.7 延时子程序40第五章 总结与展望415.1 总结415.2 系统展望41结束语43参考文献:

7、44火灾自动报警系统 摘 要宾馆火灾自动报警系统是随时警惕火灾、及时报警和输出联动灭火信号的忠实哨兵。该系统的设计主要涵盖以下六个方面:传感器的选型、单片机的选取、接口芯片的选取、报警装置的设计、电源的设计以及联动消防装置的设计。火灾自动报警系统通过一定的方式向火灾报警控制器发出火灾报警信号,火灾报警控制器收到报警信号后,立即发出声光报警,并打开消防联动装置。本设计的检测装置由离子感烟传感器UD-02和与之配套的专用集成电路DQ-295等组成,通过对现场的火灾参数采集,模/数转换,地址编码,然后传送给单片机,由单片机进行相应的运算处理,判断现场是否发生火灾。这种信号处理方式将单片机用于火灾模式

8、判别,可以根据火灾发生时,火灾参数的发展变化规律来识别真假火灾,不同于传统单一的定值判别方式,有利于提高火灾判别的准确性。关键词:火灾自动报警系统 监测 控制 消防联动 第一章 绪论1.1 本论文的研究背景近年来,随着科学技术日新月异的发展,生产力水平达到了前所未有的高度。城市现代化在这样的背景下发展速度越来越快,高层建筑异军突起,宾馆行业也跻身其中。由于高层建筑都有建筑高度高、建筑面积大、用电设备多、供电要求高、人员集中等特点,这些都给高层建筑的防火问题提出了很高的要求。而最近几年,我国因特大恶性火灾导致的多起群死群伤事件已引起有关部门的高度重视,高层宾馆、大型商场等人员集中地区的防火问题被

9、提上日程。在这些场所内,各种电气电子设备高度集中且处于长期运行状态,电气设备过载、过热、短路的火灾隐患较多;另外,由于此类场所人群集中且易燃物较多,也从客观上制造了火灾隐患。一旦发生火灾将很难及时救助,势必要给国家和个人带来不可估量的损失。为此,在过去相当长的一段时期内,人类不得不对火灾发生过程进行专项研究,截至目前,已经形成了较为成熟的概念。火灾的发生和发展过程是一个复杂的物理化学过程,而且与环境的相关性很强。一般情况下,一场火灾发生过程都伴随着烟、温、光等信号的产生。基于不同环境及不同燃烧物成分的火灾的生成气成分、烟雾的粒径构成、温场分布及光谱均有不同,因此,火灾过程涉及多个物理和化学参数

10、,而且特征性比较强,与一般的扰动有着本质的区别。基于上述特性,早期火灾探测技术应运而生,尤其是火灾多元复合探测技术在火灾探测领域得到广泛采用,如采用物理参数复合的烟温复合探测器,采用不同波段光传感器复合的双波段火焰探测器等。上述一切条件都促使了火灾报警系统的诞生。火灾自动报警系统是随时警惕火灾、及时报警和输出联动灭火信号的忠实哨兵,是早期报警的有力手段。实践证明,设置先进的火灾自动报警和自动灭火系统是高层建筑做好自防自救的关键。羊城晚报称火灾自动报警系统为“全天候的功勋卫士”。1.2 现有火灾自动报警系统比较随着传感技术及火灾特征性研究的发展,复合探测技术逐渐成熟,将来势必能从根本上解决由于特

11、征分析无法辨识火灾与非火灾参数而引起的各种问题。我国自1985年以来,单片机的开发和应用取得了一定的进展,尤其进入90年代以后,在自动控制、智能仪表、自动测试、家电、通讯领域得到了很好的应用,其中用单片机开发的火灾自动报警器就是很好的一例。火灾自动报警器最初是以晶体管继电器为分立元件的产品,80年代末,90年代初随着微型计算机的开发应用,出现了以微机为核心的通用火灾报警器。它的应用使人们对火灾的控制能力大大增强,使危害大大降低。火灾报警器的主要心脏部件就是单片机,通过它接收来自火灾探测器的报警信号,经过确认后,发出声光报警,显示报警位置,并能发出控制信号启动消防设备,迅速灭火。可见,从信号的接

12、收处理到报警消防,完全实现了自动控制,单片机在其中起到了关键的作用。1.2.1 传统火灾探测技术传统的火灾探测报警技术是由火灾探测器感知现场的某种火灾参数(如烟浓度、温度等),当被感知的火灾参数达到某个限度值后,火灾探测器通过一定的方式向火灾报警控制器发出火灾报警信号,火灾报警控制器收到报警信号后,立即发出声光报警。这种信号处理方式的火灾报警设备在实际应用中有几个不足之处:(1)探测器的灵敏度固定,不易改变,这样在不同场合、不同环境中使用就不能选择最佳的火灾探测灵敏度,选择高了容易误报警,选择低了一旦发生火灾,报警不及时会损失严重。(2)火灾探测报警系统缺乏故障的自诊断、自排除能力。火灾报警系

13、统是长年不间断运行的设备,要求具有高度可靠的性能。(3)火灾报警的判据单一,对环境背景的干扰影响无法消除,这样在一些场合就不能提供准确的报警。传统的火灾探测报警系统的火灾判据仅仅是根据某种火灾参数是否达到某一定值来确定,这一判别工作是在火灾探测器中由硬件电路实现的,这样就有可能由于环境背景的影响,或火灾探测器内部电路的缓慢漂移,产生误报。1.2.2 智能火灾探测技术为了克服传统火灾探测技术的弊病,近年来发展了智能型火灾报警技术,完全摆脱了传统的火灾报警信号处理方式,使得火灾报警系统的可靠性有较大提高,这种智能分几个方面:(1)探测智能:采用单片机作为信号处理芯片,通过对现场的火灾参数采集,模/

14、数转换,地址编码,然后传送给火灾报警控制器,由火灾报警控制器中的计算机进行相应的运算处理,判断现场是否发生火灾,这种信号处理方式将计算机用于火灾模式判别,可以根据火灾发生时,火灾参数的发展变化规律来识别真假火灾,改变传统单一的定值判别方式,有利于提高火灾判别的准确性。(2)监控智能:在传统的百家系统中监控功能智能由硬件逻辑电路来完成。不仅增加成本,而且许多系统内部的故障都不能报警。采用智能技术后,系统的正常维护工作由计算机自身的软件完成,周期地运行自诊断程序,可以发现系统的任何微小的故障,大大提高了系统运行的可靠性能。(3)抗干扰智能:由于系统的运行环境比较复杂,有时线路上和环境空间存在着严重

15、的干扰信号,这些在传统的报警系统中难以滤除,影响系统的正常运行。抗干扰智能采用各种消除干扰的软件技术(如数字滤波等),把干扰信号限制到最低限度,提高和系统的抗干扰能力。一般情况下,智能化火灾检测系统基本组成框图如图1-1所示。被测参数模拟显示模拟量输出通道微机模拟量输入通道传感器数据记录器报警器图1-1 智能化火灾检测系统1.3 火灾自动报警系统的发展与现状一些发达国家对超早期火灾探测报警技术的研究与产品开发十分重视。早在20世纪80年代,日本、美国、英国、瑞士、德国、法国、澳大利亚等国相继开始投入大量的科研经费、科技力量进行技术产品的专门研究和开发。火灾探测报警系统可靠性的提高体现在用智能技

16、术处理传感器提供的火灾信息上人们建立了多种火灾探测算法、模糊逻辑、神经网络模式,也有从事研究非火灾探测的模式。而各种单一传感器提供的火灾信息均混杂非火灾信息,从而,给从传感器提供的火灾信息上判别火灾增加了难度。于是,人们开始探索新型探测原理的传感器件(如气体气味传感器等)和复合探测器,取得显著成效的是对火灾过程的多参数进行监测的复合传感器。它对火灾产生的多种参数进行多种信息的分析,排除干扰,确定火灾,从而提高了判断火灾的准确性。而与之配套的硬件则采用复合多传感等传感方式,为判断火灾提供更加充分的火灾信息。成熟的产品有烟、温复合智能火灾探测报警系统,并已用于实际工程。我国的火灾报警器控制系统经历

17、了从无到有、从简单到复杂的发展过程,其智能化程度也越来越高。目前已有多家科研院所和厂家致力于研发适合我国消防领域特点的火灾自动报警监控联网技术及相关产品,在部分城市建立了火灾报警监控网络系统,在消防监控和灭火救援方面发挥了重要作用。虽然我国应用自动报警装置的时间并不长,但是据不完全统计,准确报警事例已达数千次。资料显示,凡装有自动报警系统的建筑物中,当火情发生时,由于能够及时报警,把火灾消灭在初期,从而大大减少了火灾的危害。随着现代科技的发展,火灾探测与报警技术也在不断提高。作为一门多专业、多学科的综合性火灾探测与报警技术,近几年得到了迅速发展,已成为人类与火灾作斗争的重要手段。加入WTO以来

18、,面对高新技术的发展机遇和国内市场国际化的竞争挑战,我国消防电子产品逐渐和世界接轨,向高可靠、智能化、网络化的早期火灾探测报警技术发展。第二章 系统原理及总体方案设计2.1 系统原理宾馆火灾自动报警系统的设计主要涵盖以下六个方面:传感器的设计、单片机的选取、接口芯片的选取、报警装置、电源以及消防联动装置的设计。宾馆火灾自动报警系统如图2-1所示。现场火灾报警器通过对传感器火情信息的检测,使用智能识别算法实现对火灾的监测。当报警器监测到火情信息后,产生声光报警信号,同时打开联动消防装置。传感器信号调理电路传感器火灾监控模块联动消防显示记录声光报警信号调理电路信号调理电路采样保持比较采样保持比较采

19、样保持比较图2-1 火灾自动报警系统原理图图2-1 火灾自动报警系统原理图2.2 系统设计2.2.1 系统各模块的设计第一,传感器的设计。传感器的作业环境是非常关键的一环,这决定了在具体环境中传感器的选型问题。传感器所要达到的任务目标必须准确无误地反应传感器在规定的工作环境中的作用。基于宾馆火灾的特殊情况,本设计选用离子感烟探测器。相对于感温探测器和气体探测器,离子感烟探测器能在火灾超早期作出准确判断。传感器的设计是本设计的中心任务,具体情况将在随后的章节中进行详述。第二,单片机的选取。根据要求,本设计选用的单片机为AT89C51。该单片机的具体情况将在随后的章节中进行阐述。第三,接口芯片。本

20、设计的接口芯片采用并行接口芯片8243。有关8243的资料将会在随后的章节中谈到。第四,报警装置。本设计的报警装置采用声光报警装置:首先,起火房间会发出声音报警;同时,起火楼层总服务台处也会产生声音报警并会显示具体的着火房间。报警装置的设计在随后章节会详细说明。第五,电源的设计。当单片机探测到着火房间后,会自动切断宾馆用电电路,同时在不影响正常工作的前提下,转换为备用电源供电。电源设计见随后章节。第六,消防联动装置。当单片机探测到火情后,会自动打开联动消防装置。消防联动装置的设计见随后章节。2.2.2 系统总构架的设计该宾馆火灾自动报警系统,能对监测点进行自动检测,一旦出现火情能立即报警,并能

21、指示出发生火灾的房间。本火灾报警系统具有结构简单、可靠性高、成本低等特点。若要换其他的传感器,该系统还可以用于防盗报警、煤气泄漏报警等。由于该系统主要用于多点集中检测报警,故能对受监测点进行巡回检测。为防止误报警,当检测到某房间有火情时,该系统应该延时3秒钟后再检测一次,若确有火情方可报警,并用数字指示出发生火灾地点。该系统的传感器选用开关量传感器。系统终端部分选用音响报警电路及数码显示电路。硬件电路如图2-2所示,主机选用AT89C51单片机,4线/7线译码器选用74LS48,数码显示部分选用BS212共阴数码管,报警电路可选用一片KD9561及放大器、扬声器来构成,多点检测电路选用8243

22、并行I/O口。由于8243每片有四个口,每个口有四个点,故每片8243可监测16个房间,图2-2用了两片8243,根据需要,还可增加8243的数量P2.0P1.0P1.3P1.4P1.5P1.6P2.4P2.7P2.3P2.2报警电路8243CSPROG P274LS488243CSPROG P2BS2124471616AT89C51 图2-2 火灾报警系统硬件结构图第三章 系统硬件设计宾馆火灾自动报警系统硬件的设计在2.2中已经作了初步的探讨,本章将继续讲述该系统硬件的设计并予以深化。3.1 硬件组成通过对火灾情况的分析,本设计采用如图3-1所示的硬件组成,报警器硬件由烟雾信号采集模块,声光

23、报警模块以及联动消防模块组成。图中1,2,3组成数据采集模块,4,5组成声光报警模块,5,6组成联动消防装置。其中,1为传感器,将现场烟雾浓度这一非电信号转化为电信号;2为信号调理电路,将传感器输出的电信号进行调理(放大、滤波等),使之满足比较转换电路的要求;3为比较转换电路,完成将烟雾传感器输出的模拟信号转换为数字信号。声光报警模块由单片机和报警电路组成,由单片机控制实现不同的声光报警(异常报警、故障报警、火灾报警)功能。下面对上述的各模块进行详细的介绍。1烟雾传感器3比较转换2信号处理4声 光 报 警 系 统5单片机系统AT89C516联动消防装置图3-1 火灾自动报警系统硬件框图3.2

24、烟雾信号采集模块图3-1中1,2,3组成烟雾数据采集模块,将现场烟雾浓度这一非电信号转化为电信号,并以数字量的形式送给单片机。3.2.1 离子感烟传感器工作原理离子感烟传感器是应用放射性同位素组成的火灾报警专用传感器,其传感灵敏度高,可靠性好,目前已经得到广泛应用。离子感烟传感器由两个电离室组成,外电离室有空与外界相通,烟雾可进入电离室,而内电离室是密封的,烟雾不能进入。由于烟雾进入外电离室,使内外两电离室离子电流不同,传感器就输出与烟雾成正比的传感信号。离子感烟传感器的工作原理如图3-2所示。 图3-2 离子感烟探测器工作原理图在正常工作状态下,放射源发出的射线电离了电离室的空气,便有电流从

25、A经B流向C,这时电离室是一个典型的电阻元件。初始条件下,在B点的电位Vb是相对稳定的,烟雾进入AB之间的检测室时,电离状态发生变化,导致AB之间的电阻阻值变化,而BC间组成的参照室因不感觉烟的存在,基本保持阻值初始状态不变,根据欧姆定律,在B点上分压值发生相应的变化,这一变化经过电路放大,做为火警信号输出,从而实现烟信号到电信号的转变。在电极之间放有放射源241镅,由于它持续不断地放射出射线,粒子以高速运动,撞击空气分子,从而使极板间空气分子电离为正离子和负离子(电子),这样电极之间原来不导电的空气具有了导电性,实现这个过程的装置我们称它为电离室。如果在极板P1和P2间加上一个电压E,极板间

26、原来做杂乱无章运动的正负离子,此时在电场的作用下,正负离子做有规则的运动。正离子向负极运动,负离子向正极运动,从而形成了电离电流I。施加的电压E愈高,则电离电流愈大。当电离电流增加到一定值时,外加电压再增高,电离电流也会增加,此电流称之为饱和电流Is,如图3-3所示。电离室又可分为双极性和单极性两种.整个电离室全部射线所照射,电离室内的空气都被电离,我们把这种电离室称为双极性电离室。 所谓单极性电离室,是指电离室局部被射线所照射,使一部分形成电离区,而未被a射线所照射的部分则为非电离区。这样在同一个电离室内分为两个性质不同区域。如图3-4所示。我们把这个非电离区称为主探测区电离电流饱和电流外加

27、电压EI 图3-3 电离电流和电压的关系图3-4 单极性电离室工作原理一般离子感烟探测器的电离室均设计成单极性的,因为当发生火灾时烟雾进入电离室后,单极性电离室要比双极性电离室的电离电流变化大,也就是说可以得到较大的电压变化量,从而可以提高离子感烟探测器的灵敏度.在实际的离子感烟探测器设计中,是将两个单极性电离室串联起来,一个作为检测电离室(也叫外电离室),结构上做成烟雾容易进入的型式;另一个作为补偿电离室(也叫内电离室),做成烟粒子很难进入,而空气又能缓慢进入的结构型式.电离室采用这种串联的方式,主要是为了减少环境温度、湿度、气压等自然条件的变化对电离电流的影响,提高离子感烟探测器的环境使用

28、能力和稳定性。如图3-5所示:开关电路回路电压UU1U2补偿电离室检测电离室图3-5 检测电离室和补偿电离室示意图当外电离室进入燃烧生成物或者烟雾时,部分正离子和负离子被吸附到燃烧生成物和烟雾颗粒上,(燃烧生成物或者烟雾要比离子大1000倍左右),所以它们在电场中的速度就比原来要慢的多,并且在移动中还有部分正负离子中和,这样到达正负极板的离子数量想对减少,即离子电流变小。烟雾数量越多,离子电流就越小。而内电离室是封闭的,无烟尘离子进入,离子电流是恒定的。内电离室与外电离室是串连的,如图3-6所示。无烟雾时,A点电位约为1/2E。若有烟雾,外电离室的离子电流减小,等效电阻增加,A点电位下降,其下

29、降程度与烟雾数量成正比。有烟雾和无烟雾时其电位差可达1V以上。外电离室内电离室等效电阻R1R+E+EAAU图3-6 离子感烟传感器等效电路图3.2.2 UD02 型离子感烟传感器UD02 型离子感烟传感器具有灵敏度高、可靠性好,性能符合标准等特点。它有两个电子室及一个放射源(AM241),对外有三个引出脚:A电极(接电源正端+9V)、B电极(接地)、C电极(收集电极即输出端),外形如图3-7所示。CBAAABC外离子室内离子室图3-7 UD-02型传感器UD02 型离子感烟传感器主要电参数:在205近海平面清洁空气条件下,收集电极(即C电极)的平衡电位为5.05.6V;有烟雾时,收集电极的电位

30、变化可达1.11.2V。极间电容为4PF,AM241放射源为0.810.99uCi;器件重量为12g,主要结构材料为不锈钢和塑料。用电加热器加热到440480时,对不同材料所产生的烟雾,其传感器收集电极电位变化1.0V时的灵敏度见表3-1所示:表3-1 UD02 型离子感烟传感器对烟雾灵敏度(收集电极电位变化V1.0V)燃烧材料烟雾含量(mg/)阴暗度(%)硅橡胶261.0乙烯基材料291.1纸烟1153过滤纸401.8棉花562.53.2.3 离子感烟传感器专用集成电路DQ-295由于离子感烟传感器的广泛应用,与之配套的专用集成电路得到了迅速发展,DQ-295是与UD02 型离子感烟传感器相

31、配套的专用集成电路。DQ-295的管脚排列如图3-8所示,其内部功能框图见图3-9所示。图3-8 DQ-295管脚图DQ-295各引脚功能如下:第15脚接离子感烟传感器的收集电极;12脚为内部振荡器的外接电容脚;7脚接定时电阻;14、15脚为输入保护用;5脚为发光管LED;1与4脚为检测脚;3与15脚为电压与灵敏度设置脚;10与11脚为报警输出脚。注:A1 电池低电压比较器 A2 信号电压比较器图3-9 DQ-295内部结构框图DQ-295集成块内部设有检测信号阀值设置(超过阀值即输出报警声)以及电池(或电源)低压设置(电压低于某值时发出报警声)。由图3-9可以看出,A1是检测电池电压的比较器

32、,电池的分压与内部稳压管相比较,若电池电压较高,比较器A1端输出高电平;若电池电压不足(内部设置的阀值电压为7.27.8V),则A1输出低电平,并给出电池电压不足的报警声(每24各时钟脉冲检测一次)。3脚为电池电压外部设置端,可以通过外接电阻网络来改变其低电压报警阀值。A2是检测信号阀值比较器,无烟雾信号时,传感器的输出平衡电压为5.3V左右,大于内部设置的阀值电压(约为4.7V),比较器A2输出低电平;当有烟雾信号时,传感器输出电压下降1V左右,则其电压小于内部设置的阀值电压,A2翻转为输出高电平,并发出调制报警声。与A1一样,也可以通过第13脚的外接电阻网络来改变阀值电平高低。3.2.4

33、离子感烟火灾报警器应用电路 (1)电路原理:离子感烟火灾报警器的应用电路见图3-10所示。它由离子感烟传感器UD-02和与之配套的专用集成电路DQ-295等组成。 注:打*的元件可根据压电晶体的不同型号而改变图3-10 离子感烟火灾报警器离子感烟传感器由内外两个电离室组成,当空气中无烟雾时,输出端O输出电平约等于1/2电源电压即4.5V,这时集成块A不工作,压电陶瓷喇叭B无声。当空气中有烟雾粉尘时,烟雾颗粒进入传感器的外电离室,使离子电流大幅下降,相当于等效电阻增大,所示O端电平下降。此电平下降的信号加到集成块的第15脚,使集成块触发工作,第10、11脚就输出调制的报警信号,推动压电陶瓷报警喇

34、叭发出响亮的报警声。途中S是试验按钮开关,离子传感器经R3由9V电压供电;当按下S时,传感器由R3、R4分压供电,供电电压只有4.5V,所以传感器O电输出电平下降,相当于有烟雾状态,则B发声报警。(2)元器件选择与制作R1R6均用RTX1/8W型炭膜电阻器;C1C3可用CT1型磁介电容器;LED为普通红色二极管;B为三端压电陶瓷扬声器;为保证电路可靠正常工作,电源最好采用9V稳压电源供给;S为小型按钮开关。3.3单片机控制中心本设计是基于单片机的声光火灾报警器,单片机是其中的核心部件,它就像大脑一样,是设计中的枢纽。AT89C51是一种低功耗/低电压、高性能的8位单片机、片内带有4K字节的FL

35、ASH可编程,可擦除只读存储器(EPROM),它采用了COMS工艺和ATMEL公司的高密度非易失性存储器技术。而且其输出引脚和指令系统都与MCS-51兼容。片内的FLASH存储器允许在系统内可改编程序或用常规的非易失性存储器编程器来编程。因此AT89C51是一种功能强、灵活性高且价格合理的单片机、可方便应用在与本次设计相关的控制领域。3.3.1 时钟电路和工作方式(1)时钟电路AT89C51内部有一个由反向放大器所构成的振荡电路,XTAL1和XTAL2分别为振荡电路的输入端和输出端,时钟可以由内部方式产生或外部方式产生。内部方式时钟电路如图3-11所示。在XTAL1和XTAL2引脚上外接定时元

36、件,内部振荡电路就产生自激振荡。定时元件通常采用石英晶体和电容组成的并联谐振电路。晶体可以在1.2MHZ到12MHZ之间选择。电容值在5-30PF之间选择。电容的大小可起频率微调作用,外部方式的时钟电路如图所示,XTAL1接地XTAL2接外部振荡器。对外部振荡器信号无特殊要求。只要保证脉冲宽度,一般采用频率低于12MHZ的方波信号。XTAL1XTAL2外部振荡器XTAL1XTAL2内部方式时钟电路外部方式时钟电路OC门+5V图3-11 内部方式和外部方式的时钟电路(2)省电工作方式AT89C51有两种可用软件来选择的省电方式空闲工作方式和掉电工作方式。这两种方式是由专用寄存器PCON(电源调制

37、寄存器)中的PCON.1和IDL(CON.0)位来控制。PD是掉电方式位,当PD=1时,激活掉电工作方式,ILD空闲方式位,当ILD=1时,激活空闲工作方式。若PD和IDL同时为1,则先激活掉电方式。3.3.2 中断系统中断技术是计算机一项很重要的技术。中断系统是指能够实现中断功能的相关硬件电路和软件程序。中断系统的功能主要为了解决快速的CPU与慢速的外设间的矛盾。有了中断系统能使计算机的功能更强、效率更高、使用更加方便灵活。MCS51系列单片机中,不同类型的单片机,其中断源数量不同。8051单片机的中断系统包括5个中断源、中断请求标志位(分别在特殊功能寄存器TCON和SCON中)、中断允许控

38、制寄存器IE、中断优先级寄存器IP及内部硬件查询电路等部分。5个中断源分为2个中断优先级,可实现两级中断嵌套,IE控制CPU是否响应中断请求。由IP设置个中断源的优先级,同一优先级内的各中断源同时提出中断请求时,由内部查询电路确定其响应次序。(1)系统的基本组成MCS-51系列单片机有5个中断源。中断源分为2个中断优先级,即高优先级和低优先级,每个中断源的优先级都可由软件来设定。MCS-51的中断系统由4个与中断有关的特殊功能寄存器(TCON、SCON的相关位作中断源的标志位)、中断允许控制寄存器IE、中断优先级管理(IP寄存器)和中断顺序查询逻辑电路等组成。中断源:MCS-51单片机有五个中

39、断源。其中、为外部中断源,其中断请求信号分别由P3.2、P3.3引脚输入,可选择低电平有效或下降沿有效(由和设置)。内部中断源有T0、T1溢出中断。串行口发送/接收共用一个中断源。中断请求标志位:有五个中断请求标志位。标志位分别为IE0、IE1、TF0、TF1、TI/RI。中断允许:两级串联式中断允许。EA=1,开CPU中断;开某个中断源中断时,还需将对应中断源的中断允许位(EX0、ET0、EX1、ET1、ES)置位。中断允许控制位存放在特殊功能寄存器IE中。中断优先级:MCS-51单片机中断分二级,即高级和低级。对于每个中断源均可通过中断优先级控制寄存器中相应位控制,当某中断源的优先控制位置

40、“1”时,该中断源设置为高级,否则为低级。对于同级中断源,由内部硬件查询逻辑来确定响应次序。中断源的入口地址:不同中断源均有不同的中断矢量,当某中断源的中断请求被CPU响应之后,CPU将通过硬件自动地把相应中断源的中断入口地址(又称中断矢量地址)装入PC中,即从此地址开始执行中断服务程序。因此,使用时一般在此地址单元中存放一条跳转指令,当CPU响应中断时,使单片机自动执行相应入口地址的跳转指令,然后再通过该跳转指令跳至到用户安排的中断服务程序的入口处。MCS-51单片机各中断源的矢量地址是固定的。中断源的入口地址分别为。 外部中断0中断: 0003H 最高级 TO定时器0中断: 000BH 外

41、部中断1中断: 0013H T1定时器1中断: 001BH 串行口输入/输出中断: 0023H 最低级(2)中断控制部分的功能8051单片机中断控制部分由4个专用寄存器组成,他们的功能分述如下:中断请求标志寄存器。5个中断源的中断请求标志位以及定时器/计数器的控制位,均设置在定时控制寄存器TCON和串行口控制寄存器SCON中。中断开放和屏蔽MCS-51单片机中,设有一个专用寄存器IE(称为中断允许寄存器)。其作用是用来对各中断源进行开放或屏蔽的控制。中断优先级设定MCS-51单片机的中断分为2个优先级,每个中断源的优先级都可以通过中断优先级寄存器IP中的相应位来设定。中断管理受IP寄存器控制,

42、CPU将各中断源的优先级分为高低2级,并遵循以下2条基本原则:1)低优先级中断源可以被高优先级中断源中断,反之不能。2)一种中断一旦得到响应,与它同级的中断不能再中断它。3)当CPU同时收到几个同一优先级的中断请求时,按自然优先级顺序确定应该响应哪个中断请求;其自然优先级由硬件形成,排列如下:中断源 同级自然优先级外部中断0 最高级定时器0中断 外部中断1 定时器1中断 串行口中断 最低级中断相应的阻断在中断处理过程中,若发生下列情况,中断相应会受到阻断:1)同级或高优先级的中断正在进行;2)现在的机器周期不是执行指令的最后一个机器周期,即正在执行的指令还没完成前不响应任何中断;3)正在执行的

43、是中断返回指令RETI或是访问专用寄存器IE或IP的指令。CPU在执行RETI或读写IE或IP之后,不会马上相应中断请求,至少要在执行其它一条指令之后才会响应。若存在上述任一种情况,中断查询结果就被取消。中断处理过程中断处理过程分为三个阶段,即中断响应、中断处理和中断返回。由于不同的计算机有不同的中断系统硬件结构,其中断相应的方式也有所不同。8051单片机的中断响应与中断返回由CPU硬件自动完成,而中断处理由软件完成。它们的详细过程在此就不赘述。3.4 声光报警模块数码显示部分选用BS212共阴数码管,报警电路选用一片KD9561及放大器、扬声器来构成。3.4.1 声音报警电路声音报警电路在单

44、片机P2口的控制下,可以在检测到火灾时发出声音报警信号。声音信号由专门的语音芯片PB2130UP002A提供,由单片机的P2.0控制。只有当该信号为高电平时,芯片才会根据控制端的控制信号发出报警声,否则不会发声报警。由于该报警器约需10mA的驱动电流,因此,选择TTL系列集成电路7406或7407低电平驱动。如图3-12所示。图中3-12中,驱动器的输入端接AT89C51的P2.0,当P2.0输出高电平“1”时,7406的输出为低电平,使压电蜂鸣器引线获得将近5V的直流电压,而产生蜂鸣音响;当P2.0端输出低电平“0”时,7406输出端升高到约+5V,压电蜂鸣器的两引线间的直流电压降至接近于0V,发音停止。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号