《了解Linux通用的双向循环链表.doc》由会员分享,可在线阅读,更多相关《了解Linux通用的双向循环链表.doc(10页珍藏版)》请在三一办公上搜索。
1、了解Linux通用的双向循环链表在linux内核中,有一种通用的双向循环链表,构成了各种队列的基础。链表的结构定义和相关函数均在include/linux/list.h中,下面就来全面的介绍这一链表的各种API。struct list_head struct list_head *next, *prev;这是链表的元素结构。因为是循环链表,表头和表中节点都是这一结构。有prev和next两个指针,分别指向链表中前一节点和后一节点。/* * Simple doubly linked list implementation. * * Some of the internal funcTIons (
2、_xxx) are useful when * manipulaTIng whole lists rather than single entries, as * someTImes we already know the next/prev entries and we can * generate better code by using them directly rather than * using the generic single-entry routines. */#define LIST_HEAD_INIT(name) list-prev = list;在初始化的时候,链表
3、头的prev和next都是指向自身的。/* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */#ifndef CONFIG_DEBUG_LISTstatic inline void _list_add(struct list_head *new, struct list_head *prev, struct list_head *ne
4、xt) next-prev = new; new-next = next; new-prev = prev; prev-next = new;#elseextern void _list_add(struct list_head *new, struct list_head *prev, struct list_head *next);#endif/* * list_add - add a new entry * new: new entry to be added * head: list head to add it after * * Insert a new entry after t
5、he specified head. * This is good for implementing stacks. */static inline void list_add(struct list_head *new, struct list_head *head)_list_add(new, head, head-next);/* * list_add_tail - add a new entry * new: new entry to be added * head: list head to add it before * * Insert a new entry before th
6、e specified head. * This is useful for implementing queues. */static inline void list_add_tail(struct list_head *new, struct list_head *head)_list_add(new, head-prev, head);双向循环链表的实现,很少有例外情况,基本都可以用公共的方式来处理。这里无论是加第一个节点,还是其它的节点,使用的方法都一样。另外,链表API实现时大致都是分为两层:一层外部的,如list_add、list_add_tail,用来消除一些例外情况,调用内部
7、实现;一层是内部的,函数名前会加双下划线,如_list_add,往往是几个操作公共的部分,或者排除例外后的实现。/* * Delete a list entry by making the prev/next entries * point to each other. * * This is only for internal list manipulation where we know * the prev/next entries already! */static inline void _list_del(struct list_head * prev, struct list_h
8、ead * next) next-prev = prev; prev-next = next;/* * list_del - deletes entry from list. * entry: the element to delete from the list. * Note: list_empty() on entry does not return true after this, the entry is * in an undefined state. */#ifndef CONFIG_DEBUG_LISTstatic inline void list_del(struct lis
9、t_head *entry) _list_del(entry-prev, entry-next); entry-next = LIST_POISON1; entry-prev = LIST_POISON2;#elseextern void list_del(struct list_head *entry);#endif/* * list_del_init - deletes entry from list and reinitialize it. * entry: the element to delete from the list. */static inline void list_de
10、l_init(struct list_head *entry) _list_del(entry-prev, entry-next); INIT_LIST_HEAD(entry);list_del是链表中节点的删除。之所以在调用_list_del后又把被删除元素的next、prev指向特殊的LIST_POSITION1和LIST_POSITION2,是为了调试未定义的指针。list_del_init则是删除节点后,随即把节点中指针再次初始化,这种删除方式更为实用。/* * list_replace - replace old entry by new one * old : the elemen
11、t to be replaced * new : the new element to insert * * If old was empty, it will be overwritten. */static inline void list_replace(struct list_head *old, struct list_head *new) new-next = old-next; new-next-prev = new; new-prev = old-prev; new-prev-next = new;static inline void list_replace_init(str
12、uct list_head *old, struct list_head *new) list_replace(old, new); INIT_LIST_HEAD(old);list_replace是将链表中一个节点old,替换为另一个节点new。从实现来看,即使old所在地链表只有old一个节点,new也可以成功替换,这就是双向循环链表可怕的通用之处。list_replace_init将被替换的old随即又初始化。/* * list_move - delete from one list and add as anothers head * list: the entry to move *
13、 head: the head that will precede our entry */static inline void list_move(struct list_head *list, struct list_head *head) _list_del(list-prev, list-next); list_add(list, head);/* * list_move_tail - delete from one list and add as anothers tail * list: the entry to move * head: the head that will fo
14、llow our entry */static inline void list_move_tail(struct list_head *list, struct list_head *head) _list_del(list-prev, list-next); list_add_tail(list, head);list_move的作用是把list节点从原链表中去除,并加入新的链表head中。list_move_tail只在加入新链表时与list_move有所不同,list_move是加到head之后的链表头部,而list_move_tail是加到head之前的链表尾部。/* * list_
15、is_last - tests whether list is the last entry in list head * list: the entry to test * head: the head of the list */static inline int list_is_last(const struct list_head *list, const struct list_head *head) return list-next = head;list_is_last 判断list是否处于head链表的尾部。/* * list_empty - tests whether a l
16、ist is empty * head: the list to test. */static inline int list_empty(const struct list_head *head) return head-next = head;/* * list_empty_careful - tests whether a list is empty and not being modified * head: the list to test * * Description: * tests whether a list is empty _and_ checks that no ot
17、her CPU might be * in the process of modifying either member (next or prev) * * NOTE: using list_empty_careful() without synchronization * can only be safe if the only activity that can happen * to the list entry is list_del_init(). Eg. it cannot be used * if another CPU could re-list_add() it. */st
18、atic inline int list_empty_careful(const struct list_head *head) struct list_head *next = head-next; return (next = head) list_empty 判断head链表是否为空,为空的意思就是只有一个链表头head。list_empty_careful 同样是判断head链表是否为空,只是检查更为严格。/* * list_is_singular - tests whether a list has just one entry. * head: the list to test.
19、*/static inline int list_is_singular(const struct list_head *head) return !list_empty(head) list_is_singular 判断head中是否只有一个节点,即除链表头head外只有一个节点。static inline void _list_cut_position(struct list_head *list, struct list_head *head, struct list_head *entry) struct list_head *new_first = entry-next; list-
20、next = head-next; list-next-prev = list; list-prev = entry; entry-next = list; head-next = new_first; new_first-prev = head;/* * list_cut_position - cut a list into two * list: a new list to add all removed entries * head: a list with entries * entry: an entry within head, could be the head itself *
21、 and if so we wont cut the list * * This helper moves the initial part of head, up to and * including entry, from head to list. You should * pass on entry an element you know is on head. list * should be an empty list or a list you do not care about * losing its data. * */static inline void list_cut
22、_position(struct list_head *list, struct list_head *head, struct list_head *entry) if (list_empty(head) return; if (list_is_singular(head) if (entry = head) INIT_LIST_HEAD(list); else _list_cut_position(list, head, entry);list_cut_position 用于把head链表分为两个部分。从head-next一直到entry被从head链表中删除,加入新的链表list。新链表
23、list应该是空的,或者原来的节点都可以被忽略掉。可以看到,list_cut_position中排除了一些意外情况,保证调用_list_cut_position时至少有一个元素会被加入新链表。static inline void _list_splice(const struct list_head *list, struct list_head *prev, struct list_head *next) struct list_head *first = list-next; struct list_head *last = list-prev; first-prev = prev; pr
24、ev-next = first; last-next = next; next-prev = last;/* * list_splice - join two lists, this is designed for stacks * list: the new list to add. * head: the place to add it in the first list. */static inline void list_splice(const struct list_head *list, struct list_head *head) if (!list_empty(list)
25、_list_splice(list, head, head-next);/* * list_splice_tail - join two lists, each list being a queue * list: the new list to add. * head: the place to add it in the first list. */static inline void list_splice_tail(struct list_head *list, struct list_head *head) if (!list_empty(list) _list_splice(lis
26、t, head-prev, head);list_splice的功能和list_cut_position正相反,它合并两个链表。list_splice把list链表中的节点加入head链表中。在实际操作之前,要先判断list链表是否为空。它保证调用_list_splice时list链表中至少有一个节点可以被合并到head链表中。list_splice_tail只是在合并链表时插入的位置不同。list_splice是把原来list链表中的节点全加到head链表的头部,而list_splice_tail则是把原来list链表中的节点全加到head链表的尾部。/* * list_splice_ini
27、t - join two lists and reinitialise the emptied list. * list: the new list to add. * head: the place to add it in the first list. * * The list at list is reinitialised */static inline void list_splice_init(struct list_head *list, struct list_head *head) if (!list_empty(list) _list_splice(list, head,
28、 head-next); INIT_LIST_HEAD(list); /* * list_splice_tail_init - join two lists and reinitialise the emptied list * list: the new list to add. * head: the place to add it in the first list. * * Each of the lists is a queue. * The list at list is reinitialised */static inline void list_splice_tail_ini
29、t(struct list_head *list, struct list_head *head) if (!list_empty(list) _list_splice(list, head-prev, head); INIT_LIST_HEAD(list); list_splice_init 除了完成list_splice的功能,还把变空了的list链表头重新初始化。list_splice_tail_init 除了完成list_splice_tail的功能,还吧变空了得list链表头重新初始化。list操作的API大致如以上所列,包括链表节点添加与删除、节点从一个链表转移到另一个链表、链表中
30、一个节点被替换为另一个节点、链表的合并与拆分、查看链表当前是否为空或者只有一个节点。接下来,是操作链表遍历时的一些宏,我们也简单介绍一下。/* * list_entry - get the struct for this entry * ptr: the list_entry主要用于从list节点查找其内嵌在的结构。比如定义一个结构struct A struct list_head list; ; 如果知道结构中链表的地址ptrList,就可以从ptrList进而获取整个结构的地址(即整个结构的指针) struct A *ptrA = list_entry(ptrList, struct A,
31、 list);这种地址翻译的技巧是linux的拿手好戏,container_of随处可见,只是链表节点多被封装在更复杂的结构中,使用专门的list_entry定义也是为了使用方便/* * list_first_entry - get the first element from a list * ptr: the list head to take the element from. * type: the type of the struct this is embedded in. * member: the name of the list_struct within the struc
32、t. * * Note, that list is expected to be not empty. */#define list_first_entry(ptr, type, member) list_entry(ptr)-next, type, member)list_first_entry是将ptr看完一个链表的链表头,取出其中第一个节点对应的结构地址。使用list_first_entry是应保证链表中至少有一个节点。/* * list_for_each - iterate over a list * pos: the prefetch(pos-next), pos != (head)
33、; pos = pos-next)list_for_each循环遍历链表中的每个节点,从链表头部的第一个节点,一直到链表尾部。中间的prefetch是为了利用平台特性加速链表遍历,在某些平台下定义为空,可以忽略。/* * _list_for_each - iterate over a list * pos: the s the * simplest possible list iteration code, no prefetching is done. * Use this for code that knows the list to be very short (empty * or 1
34、 entry) most of the time. */#define _list_for_each(pos, head) for (pos = (head)-next; pos != (head); pos = pos-next)_list_for_each与list_for_each没什么不同,只是少了prefetch的内容,实现上更为简单易懂。/* * list_for_each_prev - iterate over a list backwards * pos: the prefetch(pos-prev), pos != (head); pos = pos-prev)list_fo
35、r_each_prev与list_for_each的遍历顺序相反,从链表尾逆向遍历到链表头。/* * list_for_each_safe - iterate over a list safe against removal of list entry * pos: the pos != (head); pos = n, n = pos-next)list_for_each_safe 也是链表顺序遍历,只是更加安全。即使在遍历过程中,当前节点从链表中删除,也不会影响链表的遍历。参数上需要加一个暂存的链表节点指针n。/* * list_for_each_prev_safe - iterate o
36、ver a list backwards safe against removal of list entry * pos: the prefetch(pos-prev), pos != (head); pos = n, n = pos-prev)list_for_each_prev_safe 与list_for_each_prev同样是链表逆序遍历,只是加了链表节点删除保护。/* * list_for_each_entry - iterate over list of given type * pos: the type * to use as a loop cursor. * head:
37、the head for your list. * member: the name of the list_struct within the struct. */#define list_for_each_entry(pos, head, member) for (pos = list_entry(head)-next, typeof(*pos), member); prefetch(pos-member.next), pos = list_entry(pos-member.next, typeof(*pos), member)list_for_each_entry不是遍历链表节点,而是遍
38、历链表节点所嵌套进的结构。这个实现上较为复杂,但可以等价于list_for_each加上list_entry的组合。/* * list_for_each_entry_reverse - iterate backwards over list of given type. * pos: the type * to use as a loop cursor. * head: the head for your list. * member: the name of the list_struct within the struct. */#define list_for_each_entry_re
39、verse(pos, head, member) for (pos = list_entry(head)-prev, typeof(*pos), member); prefetch(pos-member.prev), pos = list_entry(pos-member.prev, typeof(*pos), member)list_for_each_entry_reverse 是逆序遍历链表节点所嵌套进的结构,等价于list_for_each_prev加上list_etnry的组合。/* * list_for_each_entry_continue - continue iteration
40、 over list of given type * pos: the type * to use as a loop cursor. * head: the head for your list. * member: the name of the list_struct within the struct. * * Continue to iterate over list of given type, continuing after * the current position. */#define list_for_each_entry_continue(pos, head, mem
41、ber) for (pos = list_entry(pos-member.next, typeof(*pos), member); prefetch(pos-member.next), pos = list_entry(pos-member.next, typeof(*pos), member)list_for_each_entry_continue也是遍历链表上的节点嵌套的结构。只是并非从链表头开始,而是从结构指针的下一个结构开始,一直到链表尾部。/* * list_for_each_entry_continue_reverse - iterate backwards from the g
42、iven point * pos: the type * to use as a loop cursor. * head: the head for your list. * member: the name of the list_struct within the struct. * * Start to iterate over list of given type backwards, continuing after * the current position. */#define list_for_each_entry_continue_reverse(pos, head, me
43、mber) for (pos = list_entry(pos-member.prev, typeof(*pos), member); prefetch(pos-member.prev), pos = list_entry(pos-member.prev, typeof(*pos), member)list_for_each_entry_continue_reverse 是逆序遍历链表上的节点嵌套的结构。只是并非从链表尾开始,而是从结构指针的前一个结构开始,一直到链表头部。/* * list_for_each_entry_from - iterate over list of given ty
44、pe from the current point * pos: the type * to use as a loop cursor. * head: the head for your list. * member: the name of the list_struct within the struct. * * Iterate over list of given type, continuing from current position. */#define list_for_each_entry_from(pos, head, member) for (; prefetch(p
45、os-member.next), pos = list_entry(pos-member.next, typeof(*pos), member)list_for_each_entry_from 是从当前结构指针pos开始,顺序遍历链表上的结构指针。/* * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry * pos: the type * to use as a loop cursor. * n: another type * to use as temp
46、orary storage * head: the head for your list. * member: the name of the list_struct within the struct. */#define list_for_each_entry_safe(pos, n, head, member) for (pos = list_entry(head)-next, typeof(*pos), member), n = list_entry(pos-member.next, typeof(*pos), member); pos = n, n = list_entry(n-me
47、mber.next, typeof(*n), member)list_for_each_entry_safe 也是顺序遍历链表上节点嵌套的结构。只是加了删除节点的保护。/* * list_for_each_entry_safe_continue - continue list iteration safe against removal * pos: the type * to use as a loop cursor. * n: another type * to use as temporary storage * head: the head for your list. * membe
48、r: the name of the list_struct within the struct. * * Iterate over list of given type, continuing after current point, * safe against removal of list entry. */#define list_for_each_entry_safe_continue(pos, n, head, member) for (pos = list_entry(pos-member.next, typeof(*pos), member), n = list_entry(pos-member.next, typeof(*pos), member); po