《SPWM全桥逆变器主功率电路设计.docx》由会员分享,可在线阅读,更多相关《SPWM全桥逆变器主功率电路设计.docx(11页珍藏版)》请在三一办公上搜索。
1、SPWM全桥逆变器主功率电路设计一. 设计目的通过电力电子技术的学习,熟悉无源逆变概念;采用全桥拓扑并用全控器 件 MOSFET形成主电路拓扑,设计逆变器硬件电路,并能开环工作。熟悉全桥逆 变器拓扑,掌握逆变原理,实现正弦波输出要素,设计SPWM逆变器控制信号发 生电路。参数指标:输入:48Vdc, 输出:40Vac/400Hz二. 设计任务(1) 熟悉交流电路中功率因数的意义;(2) 掌握全桥逆变概念,分析全桥逆变器中每个元件的作用;(3) 分析正弦脉宽调制(SPWM)原理,及硬件电路实现形式:(4) 应用protel制作SPWM逆变器线路图;(5) 根据原理图制作硬件,并调试;三. 设计总
2、体框图图1设计总体框图逆变电路四.设计原理分析SPWM脉宽调制原理PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。即 通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。 当采用正弦波作为调制信号来控制输出PWM脉冲的宽度,使其按照正弦波的规律 变化,这种脉冲宽度调制控制策略就称为正弦脉冲宽度调制(Sine pulse width modulation, SPWM),产生SPWM脉冲,采用最多的载波是等腰三角波;因为等腰 三角波上任一点的水平宽度和高度成线性关系且左右对称,当它与任何一个平缓 变化的调制信号波相交时,如果在交点时刻对
3、电路中开关器件的通断进行控制, 就可以得到宽度正比于信号波幅值的脉冲。在调制信号波为正弦波时,所得到的 就是SPWM波形。SPWM波形的产生(如图2)F IL kn n a iiiiiii in nnnnn m ri ir1 III Ll II i ! 门项叩nrn i-L_ir ii ii 5 : n ri n%n nn n rnrnLn n n1 n yfl 门1 il _ H IIiii ri ri n n 小I-iWf图2 SPWM波形的产生1).全桥倍增SPWM控制主电路和其他全桥逆变电路完全一致,控制脉冲的发生类似双极性SPWM的 模式,所不同的是,其桥臂之一所使用的互补控制脉冲由
4、正弦调制波和三角载波 比较产生,而另一个桥臂脉冲由同一正弦波和反相的三角载波比较产生(或者是 反相三角载波和同一正弦波比较产生)。这种调制输出谐波性能等效于2倍载波 频率的单相单极性SPWM,所以叫做倍频式SPWM,它仅仅在控制上作了简单改动, 却大幅度提高了性能,是一种很具实用价值的技术。对开关频率不变,等效输出 频率倍增的效果,可以从不同的角度直观理解:一种是从调制波反相角度看,将 两桥臂视为两组独立反相双极性SPWM半桥输出,它们的奇数倍开关频率谐波群 也反相抵消掉了;或者可以从载波反相角度理解,相当于等效载波频率加倍。由于逆变器应用场合不同,负载特性与要求也各异,到目前为止并没有一 种
5、PWM方法能够兼顾各方面的要求。随着逆变技术和微处理器性能的不断发展, 传统的PWM控制方法不断受到新控制策略的挑战,新思想、新方法和新技术层出 不穷,形成了逆变控制技术蓬勃发展的景象。2).正弦脉冲宽度调制采用正弦波作为调制信号来控制输出PWM脉冲的宽度,使其按照正弦波的规 律变化,这种脉冲宽度调制控制策略就称为正弦脉冲宽度调制,简称正弦脉宽调 制。产生SPWM脉冲,采用最多的载波是等腰三角波;既可以采用自然采样也可 以规则采样;既可以采用单极性控制模式也可以采用双极性控制模式,但使用较 多的是规则采样双极性控制方式。a. 准正弦脉宽调试法在正弦调制波上叠加幅度适当并与正弦调制波同相位的三次
6、谐波分量,从而 得到合成后的马鞍形调制波,这个三次谐波和三角波比较产生PWM脉冲的方法就 是准正弦波脉冲宽度调制法。b. 消除特定谐波法消除特定谐波法的核心是通过对电压波形脉冲缺口位置的合理安排和设置,以 求既能达到控制输出电压基波大小,又能有选择地消除逆变器输出电压中某些特 定谐波的目的。c. 电压空间矢量脉冲宽度调制技术电压空间矢量脉冲宽度调制技术是从交流电机的角度出发,以控制交流电机 磁链空间矢量轨迹逼近圆形为调制目的,以求减小电动机的转矩脉动,改善电动 机的动态性能。1. 电路组成及工作原理分析:电路主要由正弦波和三角波发生电路,控制电路和逆变电路组成。电路中 所用到的元器件主要有IC
7、L8038,运算放大器LF353,比较器LM311,IR2110, MOSFET,CD4069,电阻电容及齐纳二极管组成。2. 控制电路分析:当电路开始工作,首先由ICL8038产生的正弦波和三角波,正弦波和三角 波的幅值由可调电阻来控制,得到的波可以通过LF353运算放大器构成的反相电 路进行反向,得到方向相反的正弦波,正弦波与三角波信号通过LM311比较芯片 产生SPWM脉冲。(如图3)图3 SPWM脉冲的产生3.主电路分析:主电路主要由驱动电路和逆变电路两大部分组成(如图4)本次设计我们采用倍频式SPWM技术,在开关频率不变的情况下,达到输出 频率倍增的效果IR2110用于驱动全桥逆变器
8、用以控制MOSFET的通断,在IR2110 的外围电路使用二极管和齐纳二极管防止MOSFET的同时导通而击穿。如下图所 示,MOSFET采用IRF150,4个IRF150两两串联后并联成桥式逆变主电路,U输 入为出入电压,VDC输出电压,电容C1、C3为VCC的滤波电容,电容C2、C4为 自举电容,二极管为自举二极管。MOSFET的驱动采用芯片IR2110驱动,2个 IR2110芯片分别驱动桥式逆变主电路的2个桥臂。工作时,两个IR2110(1)和 IR2110C2)的输入SPWM脉冲是相反的,两个IR2110分别驱动不同桥臂的MOSFET 管,IR2110(1)的 HO 驱动 Q1、IR21
9、10(1)的 LO 驱动 Q2,IR2110(2)的 HO 驱动Q3、IR2110(2)的1。驱动Q4,由于输入的两个SPWM脉冲是相反的,2个 桥臂上的MOSFET管会交叉导通,即Q1、Q3同时导通或者Q2、Q4同时导通,两 种情况依次循环导通,从而完成逆变。图4主电路图3.1驱动电路设计在功率变换装置中,根据主电路的结构,起功率开关器件一般采用直接驱动 和隔离驱动两种方式.美国IR公司生产的IR2110驱动器,兼有光耦隔离和电磁 隔离的优点,是中小功率变换装置中驱动器件的首选。该芯片具有驱动电流大, 速度快,外围电路简单,可驱动母线电压高达500V的全桥,对输入信号要求低 等优良性能。IR
10、2110的内部功能框图如图1所示。由三个部分组成:逻辑输入,电平平移 及输出保护。如上所述IR2110的特点,可以为装置的设计带来许多方便。尤其 是高端悬浮自举电源的成功设计,可以大大减少驱动电源的数目,三相桥式变换 器,仅用一组电源即可。3.1.1 IR2110引脚功能及特点简介(图5):图5 IR2110引脚图L0(引脚1):低端输出COM(引脚2):公共端Vcc (引脚3):低端固定电源电压Nc (引脚4):空端Vs (引脚5):高端浮置电源偏移电压VB (引脚6):高端浮置电源电压HO (引脚7):高端输出Nc (引脚8):空端VDD (引脚9):逻辑电源电压HIN (引脚10):逻辑
11、高端输入SD (引脚11):关断LIN (引脚12):逻辑低端输入Vss (引脚13):逻辑电路地电位端,其值可以为0VNc (引脚14):空端IR2110的特点:1)具有独立的低端和高端输入通道。2)悬浮电源采用自举电路,其高端工作电压可达500V。3)输出的电源端(脚3)的电压范围为1020V。4)逻辑电源的输入范围(脚9)515V,可方便的与TTL,CMOS电平相匹配, 而且逻辑电源地和功率电源地之间允许有V的便移量。5)工作频率高,可达500KHz。6)开通、关断延迟小,分别为120ns和94ns7)图腾柱输出峰值电流2A3.1.2 IR2110的工作原理IR2110内部功能由三部分组
12、成:逻辑输入;电平平移及输出保护。如上所 述IR2110的特点,可以为装置的设计带来许多方便。尤其是高端悬浮自举电源 的设计,可以大大减少驱动电源的数目,即一组电源即可实现对上下端的控制。高端侧悬浮驱动的自举原理:IR2110驱动半桥的电路如图所示,其中C1,VD1分别为自举电容和自举二 极管,C2为VCC的滤波电容。假定在S1关断期间C1已经充到足够的电压(VC1 VCC)。当HIN为高电平时如图6 : VM1开通,VM2关断,VC1加到S1的栅极和源极 之间,C1通过VM1,Rg1和栅极和源极形成回路放电,这时C1就相当于一个电 压源,从而使S1导通。由于LIN与HIN是一对互补输入信号,
13、所以此时LIN为 低电平,VM3关断,VM4导通,这时聚集在S2栅极和源极的电荷在芯片内部通过 Rg2迅速对地放电,由于死区时间影响使S2在S1开通之前迅速关断。当HIN为低电平时如图7: VM1关断,VM2导通,这时聚集在S1栅极和源极 的电荷在芯片内部通过Rg1迅速放电使S1关断。经过短暂的死区时间LIN为高 电平,VM3导通,VM4关断使VCC经过Rg2和S2的栅极和源极形成回路,使S2 开通。在此同时VCC经自举二极管,C1和S2形成回路,对C1进行充电,迅速 为C1补充能量,如此循环反复。VD1 vrnw图6 HIN为高电平图7 HIN为低电平3.2逆变电路设计所谓“逆变是将直流电转
14、化为极性周期改变的交流电,从电路拓扑上看, 有多种结构可以实现电能的极性反转。以电压源功率变换为例:桥式逆变结构:基本的电压源桥式逆变结构(如图8所示),两组功率开关串联跨接于电源, 成为一个桥臂,以其串联中点为输出点。这样的结构不允许串联开关同时导通, 按照不同开关的通断组合,桥臂可以将它所跨接的两个不同电位作为输出,合理安排这些不同的桥臂输出电位可能生成有正有负的输出电压,这是桥式逆变电路 实现电源极性变换的基本原理。桥式电路是逆变器中得到最广泛应用的拓扑形 式,其器件电压耐受值较低,控制、组合灵活,在自换流或者负载换流模式都可 以工作,不依赖变压器参与逆变,适应性非常广泛。桥式电路的形式
15、多种多样, 如半桥、全桥、三相桥、多相桥等。图8基本的电压源桥式逆变结构图4.参数计算与分析ICL8038 (如图 9)图9 ICL8038输入、输出电压波形图输入、输出电压波形如图9所示,要求输出40V 400Hz交流电压。本次设 计中采用正弦波调制SPWM脉冲,所以需要400Hz的正弦波,三角波可以选用 10倍到20倍的正弦波频率,我们选用15倍,6000Hz。正弦波和三角波的产生 采用ICL8038芯片产生。ICL8038芯片产生三角波和正弦波的振荡频率由下式确f =爵 R 2R1C (1 + R2)2 R1 - R 2产生正弦波时,C=0.47uF, R+R2=21KQ,10 KQ R
16、111 KQ,10 KQR211KQ。输出f=400Hz时,调节1 KQ电位器,可以调节输出频率为400Hz。产生正弦波时,C=1000pF, R1+R2=35KQ,15 KQ R120 KQ,15 KQR220KQ。输出f=6000Hz时,调节5 KQ电位器,可以调节输出频率为6000Hz。电力MOSFET IRF150的主要参数及分析Vdss=100V, Rds(on)=0.055ohm, Id= 38A,耐压方面,MOSFET电流容量小,耐压低。设计要求输入直流48V,输出交流 40V,由于实际在使用MOSFET时,要考虑到适当的安全裕量,一般为额定电压的2 3倍,即要求电压100V15
17、0V,IRF150的Vdss=100V能够满足要求。开关频率方面,MOSFET开关速度快,功率频率高。设计要求输出频率400HZ, IRF150高频率特性能够满足要求。五.主要参数和器件清单ICL8038波形发生器2个LF353运放器1个LM311比较器2个4069反向器2个IR21102个IRF1504个4.7K电阻若干10K电阻若干0.01uf电容若干六心得体会通过此次课程设计我的实际工程能力有了较大提高,并能将学到的理论知识 很好的运用到工程实践中。借阅大量的有关单片机方面的书籍,充分利用网络资 源,还有通过和同学的交流讨论,这些都在无形中拓宽了我的知识面,让我学到 了更多的知识。首先,我熟悉了交流电路中功率因数的意义。对电力电子的相关器件有了更深刻的了解,在获得新知识的同时,也增强了我的动手能力,把知识 用于实践。这次专业方向课程设计,我不仅加深课本知识的理解,将理论很好地应用到 实际当中去,而且我还学会了如何去培养我们的创新精神,从而不断地战胜自己,电力电子自关断器件及电路黄俊 秦祖荫电力电子研究余天超越自己。七.参考文献电力电子技术电力电子应用基础电力电子应用技术金海明郑安平等编著陈拥军主编叶斌主编北京邮电大学出版社西安交通大学出版社清华大学出版社机械工业出版社机械工业出版社