《基于plc的变频恒压供水系统大学本科方案设计书标准版.doc》由会员分享,可在线阅读,更多相关《基于plc的变频恒压供水系统大学本科方案设计书标准版.doc(46页珍藏版)》请在三一办公上搜索。
1、在城市化进程迅速的今天,城市的居住形式主要是生活小区,那么小区供水系统的建设就显得尤为重要。而且随着城市用水量不断增加,对供水系统的建设提出了更高的要求。供水的经济性、可靠性、稳定性直接影响到小区住户的正常生活和工作。本系统是针对居民生活用水而设计的一套由变频器、PLC、水泵机组等设备组成的自动变频恒压供水控制系统。该系统将PLC、变频器、相应的传感器和执行机构有机地结合起来,并发挥各自优势,能够最大程度满足需要,具有运行稳定、操作简单和高效节能等特点。该系统对变频器内置PID模块参数进行预置,通过压力传感器对水压的反馈构成闭环控制系统;PID模块根据用水量的变化调节水泵的输出流量,实现恒压供
2、水,并达到有效节能的目的。本文首先介绍了采取变频调速方式实现恒压供水相对于传统的阀门控制恒压供水方式的节能原理;其次,对水泵机组的各种供水状态及转换的条件、水泵由变频转工频运行方式的切换过程进行分析,着重研究并提出了基于PLC和变频器的恒压供水系统的方案,并给出了硬件设计和PLC控制程序设计。关键词:PLC;变频调速;恒压供水ABSTRACTIn todays rapid urbanization, urban living is mainly living quarters, then the construction of residential water supply system i
3、s particularly important. And with the growing urban water demand, water supply systems, the proposed higher requirements. Economics of water supply, reliability and stability to the district residents directly affected the normal life and work.The system is designed for household water set by the f
4、requency converter, PLC, water pump and other equipment consisting of automatic constant pressure water supply control system. System PLC, frequency converter, the corresponding sensors and actuators together organically, and play their respective advantages, the control system easy to operate, not
5、only to the greatest extent to meet the needs of stability and security of its operating performance, simple and convenient mode of operation , and the complete and thoughtful features, will make water saving water, saving, labor saving, high efficiency high-quality final run, reliable, energy-savin
6、g purposes. This paper introduces the way to achieve frequency control constant pressure water supply valve control compared to conventional energy-saving principle of constant pressure water supply. Converter built-in PID module on the preset parameters, using hydraulic pressure sensor feedback, cl
7、osed loop system. According to changes in water consumption, to PID regulation mode, by adjusting the pump output flow, constant pressure water supply and efficient energy. Then it analyzes the state of pump units and conversion of various water conditions, analysis of the pump frequency by the freq
8、uency change operating mode of the switch process. Important parts of functional analysis, focusing on research and put forward based on PLC and frequency constant pressure water supply system program, were given control of the hardware design and PLC programming.Keywords: PLC。 frequency control。 co
9、nstant pressure water supply目 录1 绪论11.1 研究背景11.2 变频恒压供水系统的国内外研究现状21.3 供水系统安全性讨论21.4 本文的设计思想32 系统的理论分析及方案的确定42.1 调速方式的比较与选择42.2 控制系统方案62.3 供水系统的控制流程92.4 变频恒压供水系统中加减水泵的条件分析113 变频恒压供水系统的硬件设计133.1 PLC选型及接线133.1.1 PLC选型133.1.2 PLC的接线及I/O分配163.2 水泵机组选型183.3 变频器选型及接线193.3.1 变频器选型193.3.2 变频器的接线233.4 PID调节器2
10、33.5 压力传感器253.6 系统主电路设计264 系统软件设计274.1 PLC控制274.1.1 PLC程序流程图274.1.2 手动运行284.1.3 自动运行284.2 编程及介绍294.2.1 总程序的顺序功能图294.2.2 自动运行顺序功能图304.2.3 手动模式顺序功能图314.2.4 系统程序梯形图设计325 总结与展望33致 谢34参考文献35附录A 系统硬件总图36附录B 系统梯形图371 绪论1.1 研究背景在城市化进程迅速的今天,城市的居住形式主要是生活小区,那么小区供水系统的建设就显得尤为重要。供水的经济性、可靠性、稳定性直接影响到小区住户的正常生活和工作。假定
11、一栋楼有10层,由于高层楼对水压的要求高,在水压低时,高层用户将无法正常用水甚至出现无水的情况,水压高时将造成能源的浪费。因此,自来水厂通过水泵加压后,必须恒压供给每一个用户。传统的供水方式如水塔高位水箱供水,单片机变频调速供水系统等都存在不同程度浪费水力、电力资源;效率低;可靠性差;自动化程度不高等缺点,严重影响了居民的用水和工业系统中的用水。目前的供水方式朝向高效节能、自动可靠的方向发展。变频调速技术以其显著的节能效果和稳定可靠的控制方式,在风机、水泵、空气压缩机、制冷压缩机等高能耗设备上广泛应用,特别是在城乡工业用水的各级加压系统,居民生活用水的恒压供水系统中,变频调速水泵节能效果尤为突
12、出。应用变频器恒压供水,因为水箱能大幅度减小,因此能有效地减小楼房的负载,由于减小了供水水箱和楼房的负荷,何以节约工程造价,相应地也扩大了楼房的面积。由于采用了变频调速,减小了供水水泵的频繁启动,可以使水泵工作在高效状态,从而可以节约能源,减小对电网的冲击。由于电动机所消耗的功率与转速的立方成正比,因此可以获得较好的节能效果。二是在开、停机时能减小电流对电网的冲击以及供水水压对管网系统的冲击。三是用变频器进行调速,用调节泵和固定泵的组合进行恒压供水,节能效果显著,对每台水泵进行软启动,启动电流可从零到电机额定电流,减少了启动电流对电网的冲击同时减少了启动惯性对设备的大惯量的转速冲击,延长了设备
13、的使用寿命。变频恒压供水的调速系统可以实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最合理的节能型供水系统。在实际应用中如何充分利用专用变频器内置的各种功能,对合理设计变频恒压供水设备、降低成本、保证产品质量等尤其重要。PLC变频恒压供水系统集变频技术、电气技术、现代控制技术于一体。采用该系统进行供水可以提高供水系统的稳定性和可靠性,同时系统具有良好的节能性,这在能源日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。1.2 变频恒压供水系统的国内外研究现状目前国内
14、有不少公司在做变频恒压供水的工程,大多采用国外的变频器控制水泵的转速,水管管网压力的闭环调节及多台水泵的循环控制,有的采用PLC及相应的软件予以实现:有的采用单片机及相应的软件予以实现。但在系统的动态性能、稳定性能、抗扰性能以及开放性等多方面的综合技术指标来说,还远远没能达到所有用户的要求。原深圳华为电气公司和成都希望集团(森兰变频器)也推出了厦压供水专用变频器,无需外接PLC和PID调节器,可完成最多4台水泵的循环切换、定时起、停和定时循环。该变频器将压力闭环调节与循环逻辑控制功能集成在变频器内部实现,但其输出接口限制了带负载容量,同时操作不方便且不具有数据通信功能,因此只适用于小容量,控制
15、要求不高的供水场所。可以看出,目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性的变频恒压供水系统的水压闭环控制研究得不够。因此,有待于进一步研究改善变频恒压供水系统的性能,使其能被更好的应用于生活、生产实践。1.3 供水系统安全性讨论影响供水系统安全性的一大因素便是水锤效应,所谓的水锤效应就是在极短时间内,因水流量的急巨变化,引起在管道的压强过高或过低的冲击,并产生空化现象,使管道受压产生噪声,犹如锤子敲击管子一样的现象。水锤效应具有极大的破坏性。压强过高,将引起管子的破裂;压强过低又会导致管子的瘪塌。此外,水
16、锤效应还可能损坏阀门和固定件。而采用变频调速,对系统的安全性有一系列的好处:(1)产生水锤效应的根本原因是:水泵在起动和制动过程中的动态转矩太大,短时间内流量的巨大变化而引起的。采用变频调速,通过减少动态转矩,可以实现消除水锤效应,减少了对水泵及管道系统所受的冲击,可大大延长水泵及管道系统的寿命。(2)降低水泵平均转速,减小工作过程中的平均转矩,从而减小叶片承受的应力,减小轴承的磨损,使水泵的工作寿命大大延长。(3)变频调速的软启动器避免了电机和水泵的硬起动,可大大延长联轴器寿命。(4)减少了起动电流,也就减少了系统对电网的冲击,提高了自身系统的可靠性。1.4 本文的设计思想本设计针对恒压供水
17、控制系统包括软硬件方面在工业实际应用中具体作用进行详细的介绍。系统将PLC、变频器(含PID)、相应的传感器和执行机构有机地结合起来,并发挥各自优势,这个操作方便的自动控制系统,以变频调速为核心,以智能供水控制系统取代了以往高位水箱和压力罐等供水设备,起动平稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;由于泵的平均转速降低了,从而可延长泵和阀门等东西的使用寿命;可以消除起动和停机时的水锤效应。使得系统调试和使用都十分方便,而且大大简化了水厂在管理、数据统计和分析等方面的工作量。变频器为主体构成的恒压供水系统不仅能够最大程度满足需要,其稳定安全的运行性能、简单方便的操作方式、以
18、及齐全周到的功能,将使供水实现节水、节电、节省人力,最终达到高效率优质运行,降低自来水的生产成本和提高生产管理水平的目的。2 系统的理论分析及方案的确定2.1 调速方式的比较与选择供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线,如图2-1所示。由图2-1可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程与流量之间的关系。管阻特性反映了水泵的能量用来克
19、服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程越大,流量也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量间的关系。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图2-1中交点。在这一点,用户的用水流量和供水系统的供水流量处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图2-1 供水系统的基本特性曲线对供水系统进行控制,是为了满足用户对流量的需求。所以,流量是系统的基本控制对象。如前所述,流量的大小取决于扬程,但扬程难以进行具体测量和控制。考虑到在
20、动态情况下,管道中水压的大小与供水能力和用水需求之间的平衡关系有关:供水能力用水需求,则压力上升;供水能力用水需求,则压力下降;供水能力用水需求,则压力不变。可见,供水能力与用水需求之间的矛盾具体反映在流体压力的变化上。因此,压力可以用来作为控制流量大小的参变量。即保持供水系统中某处压力的恒定,也就保证了该处的供水能力和用水流量处于平衡状态,恰到好处地满足了用户所需的用水流量。变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵做成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。因此,供水系统变频的实质
21、是异步电动机的变频调速。异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。根据电机学理论,交流电动机的转速公式为: (2-1)其中:f 为定子的电源或稳压器频率; p为极对数;n为转速;s 为转差率。从上式可知,当极对数p不变时,电机转子转速刀与定子电源频率戚正比,因此连续调节异步电机供电电源的频率,就可以连续平滑地调节电机的同步转速,从而调节其转子的转速。变频调速时,从高速到低速都可以保持有限的转差率,因而变频调速具有高效率、高精度、调速范围广、平滑性较高、机械特性较硬的优点,调速性能可与直流电动机调速系统相媲美。因此,变频调速是交流异步电机中一种比较合理和理想的调速方法
22、,它被广泛地应用于对水泵电机的调速。在供水系统中,通常以流量为控制目的,常用的控制方法为阀门控制法和转速控制法。阀门控制法是通过调节阀门开度来调节流量,水泵电机转速保持不变。其实质是通过改变水路中的阻力大小来改变流量,因此,管阻将随阀门开度的改变而改变,但扬程特性不变。由于实际用水中,需水量是变化的,若阀门开度在一段时间内保持不变,必然要造成超压或欠压现象的出现。转速控制法是通过改变水泵电机的转速来调节流量,而阀门开度保持不变,是通过改变水的动能改变流量。因此,扬程特性将随水泵转速的改变而改变,但管阻特性不变。变频调速供水方式属于转速控制。其工作原理是根据用户用水量的变化自动地调整水泵电机的转
23、速,使管网压力始终保持恒定,当用水量增大时电机加速,用水量减小时电机减速。当用阀门控制流量时,无论用水量多大,电机都一样运行,尤其用水量少时,效率很低,有很多功率被浪费掉。转速调节时,用多少水,抽多少水,水泵的效率不变,总处于最佳状态3。随着电子技术的发展、完善,变频调速所具有的调速的机械特性好,效率高,调速范围宽,精度高,调整特性曲线平滑,可以实现连续的、平稳的调速,体积小、维护简单方便、自动化水平高等一系列突出的优点而倍受人们的青睐。而发展到现在为止交流电机的变频调速技术已经发展成为一项成熟的技术,它将供给交流电机的工频交流电源经过二极管整流变成直流,再由IGBT或GTR模块等器件逆变成频
24、率可调的交流电源,以此电源拖动电机在变速状态下运行,并自动适应变负荷的条件。它改变了传统工业中电机启动后只能以额定功率、定转速的单一运行方式,从而达到节能目的。现代变频调速技术应用于电力水泵供水系统中,较为传统的运行方式可节电4060,节水1530,所以本文供水系统采用变频调速恒压供水方式。2.2 控制系统方案该系统主要有压力传感器、变频器、恒压控制单元、水泵机组以及低压电器组成。系统主要的设计任务是利用恒压控制单元使变频器控制一台水泵或循环控制多台水泵,实现管网水压的恒定和水泵电机的软启动以及变频水泵与工频水泵的切换,同时还要能对运行数据进行传输。由于PLC+变频器组成的恒压控制方式灵活方便
25、,便于数据传输的优点,又能达到系统稳定性及控制精度的要求。同时由于PLC的抗干扰能力强、可靠性高,根据系统的设计任务要求,结合系统的使用场所,本文采用PLC与变频调速装置构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,即根据实际设定水压自动调节水泵电机的转速,自动补偿用水量的变化,以保证供水管网的压力保持在设定值,既可以满足生产供水要求,还可节约电能,使系统处于可靠工作状态,实现恒压供水6。整个系统由一台PLC,一台变频器,水泵机组(本系统设计为3台),一个压力传感器,低压电器及一些辅助部件构成。各部分功能如下:(1)水泵用来提高水压以实现向高处供水
26、;(2)安装于供水管道上的远传压力表将管网水压力转换成电信号;(3)变频调速器用于调节水泵转速以调节管网中水流量;(4)PLC用于水泵的逻辑切换、控制等;(5)外围辅助电路可以当自动控制系统出现故障时可以通过人工调节方式维持系统运行,以保障连续供水。系统主要的设计任务是利用PLC控制系统使变频器循环控制3台水泵,实现管网水压的恒定和水泵电机的软起动以及变频水泵与工频水泵的切换,同时对运行过程中的数据信号进行传输,处理。通过压力传感器检测管道压力信号不断反馈给变频器,有变频器自动调节所控制水泵的电机转速,当变频器所控制的水泵达到工频时还不能满足要求时由PLC自动把那台水泵切换到工频运行,把变频器
27、自动切换到下一台水泵使其软启动运行,当供水量减少时在自动进行切换,减少水泵运行台数,实现自动控制。系统设计时考虑到水泵切换时电机的自感电动势现象,各种连锁保护及报警、应急措施。系统总体框图如下:图2-2 系统总体框图从整体框图中,我们可以看出系统由控制系统、执行机构、信号检测、人机界面、以及报警装置等部分组成。(1)控制系统控制系统包括PLC系统、变频器和电控设备三个部分。PLC系统:它是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的工况、压力、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水
28、泵)进行控制。变频器:它是对水泵进行转速控制的单元。变频器跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。电控设备:它是由一组接触器、保护继电器、转换开关等电气元件组成。用于在供水控制器的控制下完成对水泵的切换、手/自动切换等。(2)信号检测在系统控制过程中,需要检测水压信号反馈信息和系统报警信号。水压信号:反映了用户管网的水压值,是恒压供水系统保持恒压的关键反馈信号。报警信号:监测系统是否正常运行,水泵是不是过载、变频器是否正常工作,为开关量信号。(3)执行机构执行机构就是一组水泵,它们协调工作,通过控制系统的增减泵工作,使得用户管网的水压保持恒定。(4)报警装置任
29、何一个自动控制系统,都离不开报警装置。为了保证系统稳定,安全运行,防止因水泵过载、变频器异常、电网出现大波动、水源中断、泵站内溢水等造成的故障,因此系统必须要对各种报警量进行监测,经PLC收集判断,进行各种显示和保护动作控制,维护系统安全稳定。2.3 供水系统的控制流程系统流程图如图2-3所示。变频调速恒压供水系统中压力传感器将主水管网压力信号转换成电信号再经PID运算送给变频器,并给出信号直接控制水泵电动机的转速和泵水量以使管网的压力稳定,由此构成压力闭环控制系统。变频器的上、下限频率信号及其持续时间长短可作为PLC进行逻辑切换、起停泵的依据。图2-3 变频调速恒压供水系统流程图合上空气开关
30、,供水系统投入运行。将手动、自动开关打到自动上,系统进入全自动运行状态,PLC中程序首先接通KM6,并起动变频器。根据压力设定值(根据管网压力要求设定)与压力实际值(来自于压力传感器)的偏差进行PID调节,并输出频率给定信号给变频器。变频器根据频率给定信号及预先设定好的加速时间控制水泵的转速以保证水压保持在压力设定值的上、下限范围之内,实现恒压控制。同时变频器在运行频率到达上限,会将频率到达信号送给PLC,PLC则根据管网压力的上、下限信号和变频器的运行频率是否到达上限的信号,由程序判断是否要起动第2台泵(或第3台泵)。当变频器运行频率达到频率上限值,并保持一段时间,则PLC会将当前变频运行泵
31、切换为工频运行,并迅速起动下1台泵变频运行。此时PID会继续通过由远传压力表送来的检测信号进行分析、计算、判断,进一步控制变频器的运行频率,使管压保持在压力设定值的上、下限偏差范围之内。增泵工作过程:假定增泵顺序为l、2、3泵。开始时,1泵电机在PLC控制下先投入调速运行,其运行速度由变频器调节。当供水压力小于压力预置值时变频器输出频率升高,水泵转速上升,反之下降。当变频器的输出频率达到上限,并稳定运行后,如果供水压力仍没达到预置值,则需进入增泵过程。在PLC的逻辑控制下将1泵电机与变频器连接的电磁开关断开,1泵电机切换到工频运行,同时变频器与2泵电机连接, 控制2泵投入调速运行。如果还没到达
32、设定值,则继续按照以上步骤将2泵切换到工频运行,控制3泵投入变频运行。减泵工作过程:假定减泵顺序依次为3、2、1泵。当供水压力大于预置值时,变频器输出频率降低,水泵速度下降,当变频器的输出频率达到下限,并稳定运行一段时间后,把变频器控制的水泵停机,如果供水压力仍大于预置值,则将下一台水泵由工频运行切换到变频器调速运行,并继续减泵工作过程。如果在晚间用水不多时,当将最后一台正在运行的水泵置于低速运行。2.4 变频恒压供水系统中加减水泵的条件分析在上面的工作流程中,我们提到当一台调速水泵己运行在上限频率,此时管网的实际压力仍低于设定压力,此时需要增加恒速水泵来满足供水要求,达到恒压的目的。当调速水
33、泵和恒速水泵都在运行且调速水泵己运行在下限频率,此时管网的实际压力仍高于设定压力,此时需要减少恒速水泉来减少供水流量,达到恒压的目的。那么何时进行切换,才能使系统提供稳定可靠的供水压力,同时使机组不过于频繁的切换。尽管通用变频器的频率都可以在0-400Hz范围内进行调节,但当它用在供水系统中,其频率调节的范围是有限的,不可能无限地增大和减小。当正在变频状态下运行的水泵电机要切换到工频状态下运行时,只能在50Hz时进行。由于电网的限制以及变频器和电机工作频率的限制,50Hz成为频率调节的上限频率。当变频器的输出频率己经到达50Hz时,即使实际供水压力仍然低于设定压力,也不能够再增加变频器的输出频
34、率了。要增加实际供水压力,正如前面所讲的那样,只能够通过水泵机组切换,增加运行机组数量来实现。另外,变频器的输出频率不能够为负值,最低只能是0Hz。其实,在实际应用中,变频器的输出频率是不可能降低到0Hz。因为当水泵机组运行,电机带动水泵向管网供水时,由于管网中的水压会反推水泵,给带动水泵运行的电机一个反向的力矩,同时这个水压也在一定程度上阻止源水池中的水进入管网,因此,当电机运行频率下降到一个值时,水泵就己经抽不出水了,实际的供水压力也不会随着电机频率的下降而下降。这个频率在实际应用中就是电机运行的下限频率。这个频率远大于0Hz,具体数值与水泵特性及系统所使用的场所有关,一般在20Hz左右。
35、由于在变频运行状态下,水泵机组中电机的运行频率由变频器的输出频率决定,这个下限频率也就成为变频器频率调节的下限频率。在实际应用中,应当在确实需要机组进行切换的时候才进行机组的切换。所谓延时判别,是指系统仅满足频率和压力的判别条件是不够的,如果真的要进行机组切换,切换所要求的频率和压力的判别条件必须成立并且能够维持一段时间(比如1-2分钟),如果在这一段延时的时间内切换条件仍然成立,则进行实际的机组切换操作;如果切换条件不能够维持延时时间的要求,说明判别条件的满足只是暂时的,如果进行机组切换将可能引起一系列多余的切换操作。3 变频恒压供水系统的硬件设计3.1 PLC选型及接线3.1.1 PLC选
36、型PLC即可编程序控制器,是一个以微处理器为核心的数字运算操作的电子系统装置,专为在工业现场应用而设计,它采用可编程序的存储器,用以在其内部存储执行逻辑运算、顺序控制、定时/计数和算术运算等操作指令,并通过数字式或模拟式的输入、输出接口,控制各种类型的机械或生产过程。PLC是微机技术与传统的继电接触控制技术相结合的产物,它克服了继电接触控制系统中的机械触点的接线复杂、可靠性低、功耗高、通用性和灵活性差的缺点,充分利用了微处理器的优点,又照顾到现场电气操作维修人员的技能与习惯,特别是PLC的程序编制,不需要专门的计算机编程语言知识,而是采用了一套以继电器梯形图为基础的简单指令形式,使用户程序编制
37、形象、直观、方便易学;调试与查错也都很方便。用户在购到所需的PLC后,只需按说明书的提示,做少量的接线和简易的用户程序编制工作,就可灵活方便地将PLC应用于生产实践1。PLC是该控制系统的核心部件,合理选择PLC对于保证整个控制系统的技术指标和质量至关重要的。PLC选择的基本原则是在满足控制功能要求的前提下,保证系统工作可靠,维护使用方便及最佳的性能价格比。目前市场上的PLC种类繁多,近年来,从美国、日本、德国引进的PLC产品及国内厂家组装或自行开发的产品已有几十个系列,上百种型号。其结构形式、性能、容量、指令系统、编程方法、价格等各有自己的特点,适用场合也各有侧重。因此,合理选择PLC,对于
38、提高PLC控制系统的技术经济指标起着重要的作用。一般选择机型要以满足系统功能需要为宗旨,不要盲目贪大求全,以免造成投资和设备资源的浪费。机型的选择可从以下几个方面来考虑。世界各国生产厂家生产的PLC虽然外观各异,但作为工业控制计算机,其硬件结构都大体相同。主要由中央处理器(CPU)、存储器(RAM、ROM)、输入输出单元(I/O)接口、电源及外围设备等几大部分构成。PLC的硬件结构框图如图3-1所示:图3-1 PLC的硬件结构框图在选择PLC的型号时一般从以下几个方面来考虑:(1)功能要适当。PLC的选型基本原则是满足控制系统的功能需要。控制系统需要什么功能,就选择具有什么样功能的PLC,当然
39、要兼顾维修、备件的通用性。(2)I/O点数是基础。准确地统计出被控设备对输入输出点数的总需要量是PLC选型的基础。把各输入设备和被控设备详细列出,然后在实际统计出I/O点数的基础上加15%20%的备用量,以便今后调整和扩充。(3)充分考虑输入输出信号的性质。除决定好I/O点数外,还要注意输入输出信号的性质、参数等。(4)估算系统对PLC响应时间的要求。对于大多数应用场合来说,PLC的响应时间不是主要的问题。响应时间包括输入滤波时间、输出滤波时间和扫描周期。PLC的顺序扫描工作方式使它不能可靠地接收持久时间小于扫描周期的输入信号。为此,需要选取扫描速度高的PLC,像FX2N型PLC能处理速度达0
40、.48s/步的顺控指令。(5)根据程序存储器容量选型。PLC的程序存储器容量通常以字或步为单位。PLC的程序步是由一个字构成的,即每个程序步占一个存储器单元。用户程序所需存储器容量可以预先估算。对于开关量控制系统,用户程序所需存储器的字数等于I/O信号总数乘以8。关于PLC的选型问题,当然还应考虑到PLC的联网通信功能、价格因素。系统可靠性也是考虑的重要因素。(6)编程器与外围设备的选择。小型PLC控制系统通常都选用价格便宜的简易编程器。如果系统大,用PLC多,选一台功能强、编程方便的图形编程器也不错,如果有现成的个人计算机,也可选用能在个人计算机上运行的编程软件包。FX2N系列PLC 是由三
41、菱公司近年来推出的高性能小型可编程控制器,采用整体式和模块式相结合的叠装式结构,具有较高的性能价格比,应用广泛。三菱的FX2N系列PLC适用于各行各业、各种场合中的检测、监测及控制的自动化。FX2N系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。由于它紧凑的设计、良好的扩展性、低廉的价格、丰富的功能模块以及强大的指令系统,使得FX2N可以近乎完美地满足小规模的控制要求,FX2N可以用模块上的电位器来改变它对应的特殊寄存器中的数值,可以实现更该程序运行中的一些参数,如定时器/计数器的设定值、过程量的控制参数等。实现时钟可用于对信息加注时间标记,记录及其运行时间或对过程进行时
42、间控制。选用 PLC 时必须从其技术指标、硬件配置等方面综合考虑。FX2N系列PLC 的技术指标包括一般技术指标、电源技术指标、输入技术指标、输出技术指标和性能技术指标等;FX2N系列PLC 的硬件配置包括基本单元、扩展单元、扩展模块、模拟量I/O 模块、各种特殊功能模块及外围设备等。三菱FX2N的主要特点:较高的可靠性;丰富的指令集;丰富的内置集成功能;实时特性强和强大的通信能力 。PLC容量的选择:PLC容量主要是指是PLC的I/O点数,I/O点数也应留有适当裕量。由于目前I/O点数较多的PLC价格也较高,若备用的I/O点是数量太多,将使成本增加。根据被控对象的输入信号和输出信号的总点数,
43、并考虑到今后的调整和扩充,通常I/O点数按实际需要的考虑留10%15%点数备用量。在本系统中,水泵M1、M2,M3可变频运行,也可工频运行,需PLC的6个输出点,变频器的运行与关断由PLC的1个输出点,控制变频器使电机正转需1个输出信号控制,报警器的控制需要1个输出点,输出点数量一共9个。控制起动和停止需要2个输入点,变频器极限频率的检测信号占用PLC2个输入点,系统自动/手动起动需1输入点,手动控制电机的工频/变频运行需6个输入点,控制系统停止运行需1个输入点,检测电机是否过载需3个输入点,共需15个输入点。系统所需的输入输出点数量共为24个点。根据系统要求和功能,本系统选用FX2N-32M
44、R型PLC。3.1.2 PLC的接线及I/O分配图3-2 PLC的接线图表3-1 PLC I/O分配I/O地址作用I/O地址作用X0启动按钮Y0M1变频X1停止按钮Y1M1工频X2上限增泵Y2M2变频X3下限减泵Y3M2工频X4M1过载检测Y4M3变频X5M2过载检测Y5M3工频X6M3过载检测Y6电机正转X7M1工频Y7接变频器X10M1变频Y10报警信号X11M2工频X12M2变频X13M3工频X14M3变频X15自动手动选择X16手动变频器启动Y0接KM0控制M1的变频运行,Y1接KM1控制M1的工频运行;Y2接KM2控制M2的变频运行,Y3接KM3控制M2的工频运行;Y4接KM4控制M
45、3的变频运行,Y5接KM5控制M3的工频运行。X0接起动按钮,X1接停止按钮,X2接变频器的FU接口,X3接变频器的OL接口,X4接M1的热继电器,X5接M2的热继电器,X6接M3的热继电器。为了防止出现某台电动机既接工频电又接变频电设计了电气互锁。在同时控制M1电动机的两个接触器KM1、KM0线圈中分别串入了对方的常闭触头形成电气互锁。频率检测的上/下限信号分别通过FU和OL输出至PLC的X2与X3输入端作为PLC增泵减泵控制信号。3.2 水泵机组选型工作水泵型号和台数的选择,应根据逐时、逐日、逐季的用水量变化,要求的水压,机组的效率和功率因素等确定。水泵和电 动机是供水系统的重要组成部分,
46、水泵选择恰当与否和动力费用有很大的关系,故须加以重视。选泵时,首先要满足供水系统的要求:(1)水泵扬程应大于实际供水高度;(2)水泵流量总和应大于实际最大供水量;(3)水泵能力足以供应最高用水量时的用水量,扬程应在该泵特性曲线的高效工作区内,以减少耗电量;(4)水泵型号应使泵站建筑面积和泵站的基础埋深为最小,以降低泵站造价;(5)水泵构造应使泵站内管线简单,以减少水头损失;(6)安装管理方便。安装卧式离心泵的泵站,平面尺寸较大而高度较低;立式轴流泵的泵站,情况正好相反,泵站的高度较大而平面尺寸较小。因此在深埋式的地下泵站可优先考虑立式泵,半地下式和地面式泵站可用卧式泵。选用多台水泵时,水泵的型
47、号最好相同,这可便于安装和维修养护管理。在此设计中要求三台主泵和主泵电机型号和容量要相同,这才有利于在同一变频器下正常的工作。大泵的效率比小泵高,而且用大泵时,工作泵和设备的费用以及泵站的面积常可减小。因此不可只从适应水量的变化出发,使用数量较多的小泵。使用多台水泵供水可防止一台水泵出现故障时,停止供水使得系统瘫痪。一般最优的水泵台数为36台。综合上述,对水泵进行选用时,要根据供水系统对流量的大小、扬程的高低和实际需要进行选择。水泵机组的选型基本原则,一是要确保平稳运行;二是要经常处于高效区运行,以求取得较好的节能效果。要使泵组常处于高效区运行,则所选用的泵型必须与系统用水量的变化幅度相匹配。在本设计中,采用ISG型立式离心泵40-160(I),其参数如下表所示:表3-2 水泵的参数型号流量(m3/h)扬程(m)转速(r/min)电机功率(kw)40-160(I)12.53229003.03.3 变频器选型及接线3.3.1 变频器选型变频器是把工频电源(50Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,它在变频调速恒压供水系统中起着非常重要作用,是水泵电机调速的执行者。变频器可分为交-直-交变频器和交-交变频器两类。交-直-交变频器是先将工频交流电通过整流器整流成直流;再把直流电经逆变器变成频率可调的交流电。交-交变频器将电网的交流电