大学毕业设计红外线自动门控制系统.doc

上传人:小飞机 文档编号:4975574 上传时间:2023-05-27 格式:DOC 页数:38 大小:2.13MB
返回 下载 相关 举报
大学毕业设计红外线自动门控制系统.doc_第1页
第1页 / 共38页
大学毕业设计红外线自动门控制系统.doc_第2页
第2页 / 共38页
大学毕业设计红外线自动门控制系统.doc_第3页
第3页 / 共38页
大学毕业设计红外线自动门控制系统.doc_第4页
第4页 / 共38页
大学毕业设计红外线自动门控制系统.doc_第5页
第5页 / 共38页
点击查看更多>>
资源描述

《大学毕业设计红外线自动门控制系统.doc》由会员分享,可在线阅读,更多相关《大学毕业设计红外线自动门控制系统.doc(38页珍藏版)》请在三一办公上搜索。

1、目 录摘要Abstract第一章 绪论21.1课题研究的可行性21.2课题的意义和目的21.3关于设计的简介和用途31.4 该设计的基本设计思路3第二章 主要器件的介绍42.1 单片机控制电路42.1.1 单片机简介42.1.2 时钟电路和复位电路52.2步进电机模块与驱动62.2.1步进电机72.2.2.步进电动机的驱动方法102.3 红外传感器的原理和使用132.4 BISS0001芯片介绍和典型电路152.5 菲涅尔透镜原理20第三章 系统硬件设计263.1 设计电路的电框图和原理263.2 各部分程序设计27第四章 系统软件设计334.1 设计电路原理图33设计总结35主要参考文献36

2、致谢信37摘 要随着社会的发展、科技的进步以及人们生活水平的逐步提高,各种方便于生活的自动控制系统开始进入了人们的生活,以单片机为核心的自动门系统就是其中之一。同时也标志了自动控制领域成为了数字化时代的一员。它实用性强,功能齐全,技术先进,使人们相信这是科技进步的成果。它更让人类懂得,数字时代的发展将改变人类的生活,将加快科学技术的发展。过对“红外通感应自动门单片机控制系统”的研究和设计,精心撰写了单片机控制自动门系统论文。本论文着重阐述了以单片机为主体,LED点阵显示芯片及无刷直流电机为核心的系统。本设计主要应用AT89C51作为控制核心,无刷直流电机、红外传感器相结合的系统。充分发挥了单片

3、机的性能。其优点硬件电路简单,软件功能完善,控制系统可靠性比较高等特点,具有一定的使用和参考价值。关键词:单片机 红外线传感器 AT89C51 BIS0001芯片 第一章 绪论1.1课题研究的可行性今天,人类已进入科学技术空前发展的信息社会,电子计算机、机器人、自动控制技术以及单片机嵌入系统的迅速发展,迫切需要行行色色的传感器。作为“感觉器官”,传感器用于将各种各样的信息检测并转换为工作系统能进行处理的信息。显而易见,传感器在现代科学技术领域中占有极其重要的地位,了解、掌握和应用传感器成了许多专业工程技术人员的必需,“传感器技术与应用”成了应用电子技术、自动控制技术、自动信号技术、测量技术、机

4、器人技术及计算机应用等专业的必修课。目前,市场上出现的热释电人体红外线传感器主要有上海产的SD02、PH5324,德国产的LH1954、LH1958,美国HAMAMATSU公司产P2288,日本NIPPON CERAMIC公司的SCA02-1、RS02D等。虽然它们的型号不一样,但其结构、外型和电参数大致相同,大部分可以彼此互换使用。 本设计主要应用单片机8051作为控制核心,步进电机、热释电型红外传感器、电位器相结合的系统。充分发挥了单片机的性能。其优点硬件电路简单,软件功能完善,控制系统可靠,性价比较高等特点,具有一定的使用和参考价值。 1.2课题的意义和目的经济飞速发展的中国,高楼耸立的

5、大都市,自动门已经是随处可见,在各大厦、宾馆、酒店、银行、商场、医院、写字楼等场所,自动门更是得到大范围的普及使用。自动门不但能给我们带来人员进出方便、节约空调能源、防风、防尘、降低噪音等好处,更令我们的建筑增添了不少高贵典雅的气息。自动门根据使用的场合及功能的不同可分为自动平移门、自动平开门、自动旋转门、自动圆弧门、自动折叠门等,其中自动平移门使用得最广泛,我们通常所说的自动门、感应门就是指自动门。自动门最常见的结构形式是自动门机械驱动装置和门内外两侧红外线,当人走近自动门时,红外线感应到人的存在,给控制器一个信号,控制器通过驱动装置将门打开。当人通过门之后,再将门关闭。由于自动门在通电后可

6、以实现无人看管,同时又可节约空调能源、防风、防尘、降低噪音,提高了建筑的档次。1.3关于设计的简介和用途热释电红外传感器是一种能检测人体发射的红外线而输出电信号的传感器,它能组成防入侵报警器或各种自动化节能装置。热释电红外传感器能以非接触形式检测出人体辐射的红外线,并将其转变为电压信号,同时,它还能鉴别出运动的生物与其它非生物。热释电红外传感器既可用于防盗报警装置,也可以用于自动控制、接近开关、遥测等领域。1.4 该设计的基本设计思路设计以AT89C51单片机为核心,统一控制红外感器和步进电机,并通过机械直线运动单元驱动玻璃门。在硬件上实现了LED系统报警显示,人员进出信号的采集与AD转换,监

7、控报警(“看门狗”技术),电机驱动控制以及光耦隔离技术,如图1所示。在软件方面,主要采汇编语言对单片机控制系统进行编程。与此同时,本系统在设计开发的过程中,考虑到实用性及性价比,所采用的芯片和器件均为通用器件,因而整个系统的造价并不高,并且有较强的应用价值和良好的发展前景。图 1 系统总体设计框图结构人体信号红外传感A/D转换AT89C51报警显示控制进出LED显示控自动门驱动控“看门狗”监控第二章 主要器件的介绍2.1 单片机控制电路2.1.1 单片机简介以大规模集成电路为主组成的微型计算机,简称为单片机,又称为嵌入式微控制器(Embedded microcontroller)。它的诞生是计

8、算机发展史上一个新的里程碑。1)单片机的发展单片机从诞生至今已经经历了4个发展阶段,分别是:第一阶段(19741976年):单片机初级阶段。因工艺限制,此阶段的单片机采用双片的形式而且功能比较简单。例如仙童公司生产的F8单片机,只包括了 8位CPU,64个字节的RAM,和两个并行口,需要加一块具有1KB ROM、定时器/计数器和两个并行口的3851芯片才能组成一台完整的计算机。第二阶段(19761978年):低性能单片机阶段。此阶段的单片机已成为一台完整的计算机,但内部资源不够丰富,以Intel公司生产的MCS-48系列为代表,片内集成了8位CPU、8位定时器/计数器、RAM和ROM等,但无串

9、行口,中断系统也比较简单,片内RAM和ROM容量较小且寻址范围不大于4KB。第三阶段(1978):高性能单片机阶段。此阶段的单片机内部资源丰富,以Intel公司生产的MCS-51系列为代表,片内集成了8位CPU、16位定时器/计数器、串行I/O口、多级中断系统、RAM和ROM等,片内RAM和ROM容量加大,寻址范围可达64KB。有的型号内部还带有A/D转换器。第四阶段(1982):8位单片机得巩固发展及16位、32位单片机推出阶段。16位单片机以Intel公司生产得MCS-96系列为代表,在片内带有多通道A/D转换器和高速输入/输出(HSI/HSO)部件,中断处理和实时处理能力很强。目前单片机

10、的品种众多,其中性能优良的8位单片机在今后若干年内仍然将是工业检测、控制应用领域中的主角。2)单片机的特点:(1)小巧灵活、成本低、易于产品化。能利用它方便地组装成各种智能式测控设备及各种智能仪器仪表,很容易满足仪器设备既智能又微型化的要求。(2)可靠性高、适用的温度范围宽。单片机芯片一般是按工业测控要求设计的,能适应各种恶劣的环境。这一点是其他机种无法比拟的。(3) 易扩展、控制能力强。通过单片机本身或扩展可以方便地构成各种规模地应用系统及多机和分布式计算机控制系统。(4) 指令系统相对简单,较易掌握,且指令中又较丰富地逻辑控制功能指令,能较方便地直接操作外部输入输出设备。由于单片机具有功能

11、强、体积小、可靠性好和价格便宜等独特优点,已成为传统工业技术改造和新产品更新换代的理想机种,具有广泛的发展前景。单片机技术的应用,使得许多领域的技术水平和自动化程度大大提高,可以说,当今世界正面临着一场以单片机(微电脑)技术为标志的新技术革命。2.1.2 时钟电路和复位电路1)时钟产生电路片内电路与片外器件就构成一个时钟产生电路,CPU的所有操作均在时钟脉冲同步下进行。片内振荡器的振荡频率非常接近晶振频率,一般多在1.2MHz24MHz之间选取。C1、C2是反馈电容,其值在20pF100pF之间选取,典型值为30pF。本电路选用的电容为30pF,晶振频率为12MHz。振荡周期;机器周期;指令周

12、期。XTAL1和XTAL2:片内振荡电路输入线,这两个端子用来外接石英晶体和微调电容。在石英晶体的两个管脚加交变电场时,它将会产生一定频率的机械变形,而这种机械振动又会产生交变电场,上述物理现象称为压电效应。一般情况下,无论是机械振动的振幅,还是交变电场的振幅都非常小。但是,当交变电场的频率为某一特定值时,振幅骤然增大,产生共振,称之为压电振荡。这一特定频率就是石英晶体的固有频率,也称谐振频率。即用来连接8051片内OSC的定时反馈回路,如图2所示。石英晶振起振后要能在XTAL2线上输出一个3V左右的正弦波,以便使MCS-51片内的OSC电路按石英晶振相同频率自激振荡。通常,OSC的输出时钟频

13、率fOSC为0.5MHz-16MHz,典型值为12MHz或者11.0592MHz。电容C1和C2可以帮助起振,典型值为30pF,调节它们可以达到微调fOSC的目的。2)单片机复位电路图3为单片机复位电路。单片机在开机时都需要复位,以便中央处理CPU以及其他功能部件都处于一个确定的初始状态,并从这个状态开始工作。单片机的复位后是靠外部电路实现的,在时钟电路工作后,只要在单片机的RST引脚上出现24个时钟振荡脉冲(2个机器周期)以上的高电平,单片机便可实现初始化状态复位。MCS-51单片机的RST引脚是复位信号的输入端。例如:若MCS-51单片机时钟频率为12MHz,则复位脉冲宽度至少应该为2s。

14、 图 2 时钟电路 图 3 复位电路2.2步进电机模块与驱动步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。2.2.1步进电机步进电动机是纯粹的数字控制电动机:它将电脉冲信号转变成角位移即结一个脉冲信号,步进电动机就转动

15、一个角度因此作常适合于单片机控制。数字技术、计算机技术和水磁材料的迅速发展推动厂步进电动机的发展,为步进电动机的应用开辟了广闹的前景。步进电动机有如下特点。1、步进电动机的角位移与输入脉冲数严格成正比具有良好的跟随型。以由步进电动机与驱动电路组成的开环数控系统,既非常简单、廉价,又非常可靠。同时它也可以与角度反馈环节组成高性能的闭外数控系统。2、步进电动机的动态响应快。易于起停、正反转及变速。3、速度可在相当宽的范围内平滑调节。低速下仍能保证获很大转矩,因此,一般可以不用减速器而直接驱动负载。4、步进电动机只能通过脉冲电源供电才能远行。它不能直接使用交流电源和直流电源,5、步进电动机存在振荡和

16、失步现象必须对控制系统和机械负载采取相应的措施。7、步进电动机自身的噪音和振动较大带惯性负载的能力较差。一、反应式步进电机反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、 结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3、2/3,(相邻两转子齿轴线间的距离为齿距以表示),即A与齿1相对齐,B与齿2向右错开1/3,C与齿3向右错开2/3,A与齿5相对齐,(A就是A,齿5就是齿1)下面图 4是定转子的展开图: 图 4 四组电机定、转子张开后的工作原理图 图 5 三相反应式步进电动机的结构示意图

17、图5是最常见的三相反应式步进电动机的剖面示意图。电机的定子上有六个均布的磁极,其夹角是60。各磁极上套有线圈,按图1连成A、B、C三相绕组。转子上均布40个小齿。所以每个齿的齿距为E=360/40=9,而定子每个磁极的极弧上也有5个小齿,且定子和转子的齿距和齿宽均相同。由于定子和转子的小齿数目分别是30和40,其比值是一分数,这就产生了所谓的齿错位的情况。若以A相磁极小齿和转子的小齿对齐,如图1,那么B相和C相磁极的齿就会分别和转子齿相错三分之一的齿距,即3。因此,B、C极下的磁阻比A磁极下的磁阻大。若给B相通电,B相绕组产生定子磁场,其磁力线穿越B相磁极,并力图按磁阻最小的路径闭合,这就使转

18、子受到反应转矩(磁阻转矩)的作用而转动,直到B磁极上的齿与转子齿对齐,恰好转子转过3;此时A、C磁极下的齿又分别与转子齿错开三分之一齿距。接着停止对B相绕组通电,而改为C相绕组通电,同理受反应转矩的作用,转子按顺时针方向再转过3。依次类推,当三相绕组按ABCA顺序循环通电时,转子会按顺时针方向,以每个通电脉冲转动3的规律步进式转动起来。若改变通电顺序,按ACBA顺序循环通电,则转子就按逆时针方向以每个通电脉冲转动3的规律转动。因为每一瞬间只有一相绕组通电,并且按三种通电状态循环通电,故称为单三拍运行方式。单三拍运行时的步矩角b为30。三相步进电动机还有两种通电方式,它们分别是双三拍运行,即按A

19、BBCCAAB顺序循环通电的方式,以及单、双六拍运行,即按AABBBCCCAA顺序循环通电的方式。六拍运行时的步矩角将减小一半。反应式步进电动机的步距角可按下式计算:b=360/NEr (1)式中 Er转子齿数; N运行拍数,N=km,m为步进电动机的绕组相数,k=1或2。2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3,此时齿3与C偏移为1/3,齿4与A偏移(-1/3)=2/3。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3,此时齿4与A偏移为1/3

20、对齐。如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A通电,电机就每步(每脉冲)1/3,向右旋转。如按A,C,B,A通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BCC-CA-A这种导电状态,这样将原来每步1/3改变为1/6。甚至于通过二相电流不同的组合,使其1/3变为1/12,1/24,这就是电机细分驱动的基本理论依据。 不

21、难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。 3、力矩:电机一旦通电,在定转子间将产生磁场(磁通量)当转子与定子错开一定角度产生力F与(d/d)成正比 S其磁通量=Br*SBr为磁密,S为导磁面积 F与L*D*Br成正比 L为铁芯有效长度,D为转子直径 Br=NI/RNI为励磁绕阻安匝数(电流乘匝数)R为磁阻。力矩=力*半径力矩与电机有效体积*安匝数*磁密 成正比(只考虑

22、线性状态)因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。2.2.2.步进电动机的驱动方法步进电动机不能直接接到工频交流或直流电源上工作,而必须使用专用的步进电动机驱动器,如图6所示,它由脉冲发生控制单元、功率驱动单元、保护单元等组成。图中点划线所包围的二个单元可以用微机控制来实现。驱动单元与步进电动机直接耦合,也可理解成步进电动机微机控制器的功率接口,这里予以简单介绍。控制指令步进电动机脉冲发生控制单元功率驱单元反馈与保护单元图 6 步进电动机驱动控制器动1. 单电压功率驱动接口实用电路如图7所示。在电机绕组回路中串有电阻Rs,使电机回路时间常数减小,高频时

23、电机能产生较大的电磁转矩,还能缓解电机的低频共振现象,但它引起附加的损耗。一般情况下,简单单电压驱动线路中,Rs是不可缺少的。Rs对步进电动机单步响应的改善如图3(b)。图 7 单电压功率驱动接口及单步响应曲线图 8 双电压功率驱动接口2.双电压功率驱动接口双电压驱动的功率接口如图8所示。双电压驱动的基本思路是在较低(低频段)用较低的电压UL驱动,而在高速(高频段)时用较高的电压UH驱动。这种功率接口需要两个控制信号,Uh为高压有效控制信号,U为脉冲调宽驱动控制信号。图中,功率管TH和二极管DL构成电源转换电路。当Uh低电平,TH关断,DL正偏置,低电压UL对绕组供电。反之Uh高电平,TH导通

24、,DL反偏,高电压UH对绕组供电。这种电路可使电机在高频段也有较大出力,而静止锁定时功耗减小。3.高低压功率驱动接口图 9高低压功率驱动接口高低压功率驱动接口如图9所示。高低压驱动的设计思想是,不论电机工作频率如何,均利用高电压UH供电来提高导通相绕组的电流前沿,而在前沿过后,用低电压UL来维持绕组的电流。这一作用同样改善了驱动器的高频性能,而且不必再串联电阻Rs,消除了附加损耗。高低压驱动功率接口也有两个输入控制信号Uh和Ul,它们应保持同步,且前沿在同一时刻跳变,如图5所示。图中,高压管VTH的导通时间tl不能太大,也不能太小,太大时,电机电流过载;太小时,动态性能改善不明显。一般可取13

25、ms。(当这个数值与电机的电气时间常数相当时比较合适)。分页4.斩波恒流功率驱动接口恒流驱动的设计思想是,设法使导通相绕组的电流不论在锁定、低频、高频工作时均保持固定数值。使电机具有恒转矩输出特性。这是目前使用较多、效果较好的一种功率接口。图10是斩波恒流功率接口原理图。图中R是一个用于电流采样的小阻值电阻,称为采样电阻。当电流不大时,VT1和VT2同时受控于走步脉冲,当电流超过恒流给定的数值,VT2被封锁,电源U被切除。由于电机绕组具有较大电感,此时靠二极管VD续流,维持绕组电流,电机靠消耗电感中的磁场能量产生出力。此时电流将按指数曲线衰减,同样电流采样值将减小。当电流小于恒流给定的数值,V

26、T2导通,电源再次接通。如此反复,电机绕组电流就稳定在由给定电平所决定的数值上,形成小小的锯齿波。图 10 斩波恒流功率驱动接口斩波恒流功率驱动接口也有两个输入控制信号,其中u1是数字脉冲,u2是模拟信号。这种功率接口的特点是:高频响应大大提高,接近恒转矩输出特性,共振现象消除,但线路较复杂。目前已有相应的集成功率模块可供采用。5.升频升压功率驱动接口为了进一步提高驱动系统的高频响应,可采用升频升压功率驱动接口。这种接口对绕组提供的电压与电机的运行频率成线性关系。它的主回路实际上是一个开关稳压电源,利用频率-电压变换器,将驱动脉冲的频率转换成直流电平,并用此电平去控制开关稳压电源的输入,这就构

27、成了具有频率反馈的功率驱动接口。2.3 红外传感器的原理和使用 热释电红外线传感器是20世纪80年代发展起来的一新型高灵敏度探测元件。它能以非接触形式检测出人体辐射的红外线或入射红外线的能量变化,并将其转换成电压信号输出。将这个电压信号加以放大,便可驱动各种控制电路,如用于电源开关控制、防盗防火报警、自动监测等。热释电红外传感器不仅适用于防盗报警场所,亦适于对人体伤害极为严重的高压电及x射线、射线自动报警等。热释电传感器利用热释电效应来检测受光面的温度升高值,得知光的辐射强度,工作在红外波段内。这种传感器在常温下工作稳定可靠,使用简单,时间响应能到微秒数量级,已得到普遍使用。其原理图如图11所

28、示,在垂直极化轴的方向上把具有热释电效应的晶体切成薄片,再研磨成厚度550um的极薄片,在两面蒸镀上电极,类似于电容器的构造。晶体本身能很好地吸收红外波段的电磁波,必要时也用黑化以后的晶体或在透明电极表面涂上黑色膜。图12为一个热释电传感器的结构示意图。图13表示热释电材料的自发极化P和温度的关系。传感器工作在曲线P(热释电系数q=dPd丁)的部分。为得到好的时间应,希望热释电材料的介电常数和tan要小,比热和密度越小越好。图 11 热释电传感器原理当热释电材料由于热释电传感器受到频率的调制光照射时,自发极化P也以频率作周期性变化。如果 (为中和平均时间),就会输出频率,的电信号。热释电传感器

29、可以看成电流源,等效电路如图4所示。图中电流其中,A为电极面积;和为绝缘电阻和电容;和为外接负载。传感器输出电压为式中,Z为、和的并联阻抗。图 12 热电型红外线传感器的内部构造热释电传感器绝缘电阻高达几十到几百兆欧,容易引入外部噪声,在实际使用中,要求有输入阻抗高、噪声小的前置放大器。通常把前放的场效应管和输入电阻装入管壳内。场效应管起到阻抗变换,同时起到抗干扰的作用。热释电红外线传感器主要部分是由一种高热电系数的材料制成尺寸为2lmm的探测元件。在每个探测器内装一个或两个探测元件,并将两个探测元件以反极性串联,以抑制由于自身温度升高而产生的干扰。探测元件的作用是探测、接收红外辐射并将其转换

30、成微弱的电压信号。图 13 温度和自发极化的关系图 14 热释电传感器的等效电路2.4 BISS0001芯片介绍和典型电路BISS0001是一款具有较高性能的传感信号处理集成电路,如下图,它配以热释电红外传感器和少量外接元器件构成被动式的热释电红外开关。它能自动快速开启各类白炽灯、荧光灯、蜂鸣器、自动门、电风扇、烘干机和自动洗手池等装置,特别适用于企业、宾馆、商场、库房及家庭的过道、走廊等敏感区域,或用于安全区域的自动灯光、照明和报警系统。 图15 BISS0001芯片介绍特 点*CMOS工艺*数模混合*具有独立的高输入阻抗运算放大器*内部的双向鉴幅器可有效抑制干扰*内设延迟时间定时器和封锁时

31、间定时器*采用16脚DIP封装管脚图 图 16管脚图管脚说明引脚名称I/O功能说明1AI可重复触发和不可重复触发选择端。当A为“1”时,允许重复触发;反之,不可重复触发2VOO控制信号输出端。由VS的上跳变沿触发,使Vo输出从低电平跳变到高电平时视为有效触发。在输出延迟时间Tx之外和无VS的上跳变时,Vo保持低电平状态。3RR1-输出延迟时间Tx的调节端4RC1-输出延迟时间Tx的调节端5RC2-触发封锁时间Ti的调节端6RR2-触发封锁时间Ti的调节端7VSS-工作电源负端8VRFI参考电压及复位输入端。通常接VDD,当接“0”时可使定时器复位9VCI触发禁止端。当VcVR时允许触发(VR0

32、.2VDD)10IB-运算放大器偏置电流设置端11VDD-工作电源正端122OUTO第二级运算放大器的输出端132IN-I第二级运算放大器的反相输入端141IN+I第一级运算放大器的同相输入端151IN-I第一级运算放大器的反相输入端161OUTO第一级运算放大器的输出端符号参数测试条件参数范围单位Vm电源电压-0.36.0VVi/Vo输入、输出电压VSS-0.3VDD-0.3VIm最大输出电流Vm=5.0W10mATopr工作温度-20+70Tstg贮存温度_-40+125直流特性参数(除特殊说明外,Tamb=25)符号参数测试条件最少值 最大值单位Vm工作电压范围-36VVm工作电流无负载

33、Vm=3V50uAVm=5V100Vm输入失调电压Rt=1.5M50mV输入失调电流Rt=1.5M50nA开环电压增益Vm=5V,Rt=1.5M60dBCMRR共模抑制比Vm=5V,Rt=1.5M60dB运放输出高电平Vm=5VRc=500k接1/2Vm4.25V运放输出低电平VVm Vc端输出高电平Vm=Vn=5V1.1VVmVc端输出低电平0.9VVmVo端输出高电平Vm=5V,Im=0.1mA4VVmVo端输出低电平Vm=5V,Im=0.1mAVVmA端输入高电平Vm=5V3.5VVmA端输入低电平Vm=5V1.5V工作原理:BISS0001是由运算放大器、电压比较器、状态控制器、延迟时

34、间定时器以及封锁时间定时器等构成的数模混合专用集成电路,如图17所示内部框图。图 15 BISS0001内部框图图18所示的不可重复触发工作方式下的波形,来说明其工作过程。 不可重复触发工作方式下的波形首先,根据实际需要,利用运算放大器OP1组成传感信号预处理电路,将信号放大。然后耦合给运算放大器OP2,再进行第二级放大,同时将直流电位抬高为VM(0.5VDD)后,将输出信号V2送到由比较器COP1和COP2组成的双向鉴幅器,检出有效触发信号Vs。由于VH0.7VDD、VL0.3VDD,所以,当VDD=5V时,可有效抑制1V的噪声干扰,提高系统的可靠性。 COP3是一个条件比较器。当输入电压V

35、cVR时,COP3输出为高电平,进入延时周期。 当A端接“0”电平时,在Tx时间内任何V2的变化都被忽略,直至Tx时间结束,即所谓不可重复触发工作方式。当Tx时间结束时,Vo下跳回低电平,同时启动封锁时间定时器而进入封锁周期Ti。在Ti时间内,任何V2的变化都不能使Vo跳变为有效状态(高电平),可有效抑制负载切换过程中产生的各种干扰。图 16 不可重复触发工作方式图19所示的可重复触发工作方式下的波形,来说明其工作过程。 可重复触发工作方式下的波形在Vc=“0”、A=“0”期间,信号Vs不能触发Vo为有效状态。在Vc=“1”、A=“1”时,Vs可重复触发Vo为有效状态,并可促使Vo在Tx周期内

36、一直保持有效状态。 在Tx时间内,只要Vs发生上跳变,则Vo将从Vs上跳变时刻起继续延长一个Tx周期;若Vs保持为“1”状态,则Vo一直保持有效状态;若Vs保持为“0”状态,则在Tx周期结束后Vo恢复为无效状态,并且,同样在封锁时间Ti时间内,任何Vs的变化都不能触发Vo为有效状态。 应用线路图 图 17 可重触发工作方式 图 20 BISS0001的热释电红外开关应用电路图图20中,运算放大器OP1将热释电红外传感器的输出信号作第一级放大,然后由C3耦合给运算放大器OP2进行第二级放大,再经由电压比较器COP1和COP2构成的双向鉴幅器处理后,检出有效触发信号Vs去启动延迟时间定时器,输出信

37、号Vo经晶体管T1放大驱动继电器去接通负载。图20中,R3为光敏电阻,用来检测环境照度。当作为照明控制时,若环境较明亮,R3的电阻值会降低,使9脚的输入保持为低电平,从而封锁触发信号Vs。SW1是工作方式选择开关,当SW1与1端连通时,芯片处于可重复触发工作方式;当SW1与2端连通时,芯片则处于不可重复触发工作方式。图中R6可以调节放大器增益的大小,原厂图纸选10K,实际使用时可以用3K,可以提高电路增益改善电路性能。输出延迟时间Tx由外部的R9和C7的大小调整,触发封锁时间Ti由外部的R10和C6的大小调整,R9/R10可以用470欧姆,C6/C7可以选0.1U。2.5 菲涅尔透镜原理菲涅尔

38、镜片是红外线探头的“眼镜”,它就象人的眼镜一样,配用得当与否直接影响到使用的功效,配用不当产生误动作和漏动作,致使用户或者开发者对其失去信心。配用得当充分发挥人体感应的作用,使其应用领域不断扩大。菲涅尔镜片是根据法国光物理学家FRESNEL发明的原理采用电镀模具工艺和PE(聚乙烯)材料压制而成。镜片(0.5mm厚)表面刻录了一圈圈由小到大,向外由浅至深的同心圆,从剖面看似锯齿。圆环线多而密感应角度大,焦距远;圆环线刻录的深感应距离远,焦距近。红外光线越是靠进同心环光线越集中而且越强。同一行的数个同心环组成一个垂直感应区,同心环之间组成一个水平感应段。垂直感应区越多垂直感应角度越大;镜片越长感应

39、段越多水平感应角度就越大。区段数量多被感应人体移动幅度就小,区段数量少被感应人体移动幅度就要大。不同区的同心圆之间相互交错,减少区段之间的盲区。区与区之间,段与段之间,区段之间形成盲区。由于镜片受到红外探头视场角度的制约,垂直和水平感应角度有限,镜片面积也有限。镜片从外观分类为:长形、方形、圆形,从功能分类为:单区多段、双区多段、多区多段。图21是常用镜片外观示意图: 图 21 镜片外观示意图图22是常用三区多段镜片区段划分、垂直和平面感应图。图 22 三区多段镜片区段划分、垂直和平面感应图当人进入感应范围,人体释放的红外光透过镜片被聚集在远距离A区或中距离B区或近距离C区的某个段的同心环上,

40、同心环与红外线探头有一个适当的焦距,红外光正好被探头接收,探头将光信号变成电信号送入电子电路驱动负载工作。整个接收人体红外光的方式也被称为被动式红外活动目标探测器。镜片主要有三种颜色,一、聚乙烯材料原色,略透明,透光率好,不易变形。二、白色主要用于适配外壳颜色。三、黑色用于防强光干扰。镜片还可以结合产品外观注色,使产品整体更美观。每一种镜片有一型号(以年号+系列号命名),镜片主要参数:一、外观描述外观形状(长、方、圆)、尺寸(直径)。以毫米为单位。二、探测范围指镜片能探测的有效距离(米)和角度。三、焦距指镜片与探头窗口的距离,精确度以毫米的小数点为单位。长形和方形镜片要呈弧形以焦距为单位对准探

41、头窗口。镜片与探头的配合应用我们常用的是双源式探头,揭开滤光玻璃片,其内部有两点对714um的红外波长特别敏感的TO5材料连接着场效管。静态情况下空间存在红外光线,由于双源式探头采用互补技术,不会产生电信号输出。动态情况下,人体经过探头先后被A源或被B源感应,SaSb产生差值,双源失去互补平衡作用而很敏感地产生信号输出,见图(3C)。当人对着探头呈垂直状态运动,Sa=Sb不产生差值,双源很难产生信号输出。因此,探测器安装的位置与人行走方向呈平行为宜。根据以上原理探头与镜片结合可以做成以下感应方式的人体探测器。A、单区多段水平式和单区多段垂直式。图(4)单区多段水平式感应角度大,这是探头水平视场

42、角度大的缘故,形成一个长方形扇面感应区,单区多段水平式亦称水平幕帘式感应,此感应方式能避开上下红外线干扰。图(5)单区多段垂直式感应角度小,这是探头垂直视场角度小的缘故,形成一个垂直形扇面感应区,单区多段垂直式亦称垂直幕帘式感应,此感应方式能避开左右红外线干扰。图(6)探头与镜片配合不符合SaSb产生差值的要求,因此感应不灵敏。采用双区同心圆相近的镜片也能达到幕帘式感应效果。单区多段和双区多段多用于局部区域感应。B、多区多段感应式和多区多段圆锥体式。图(7)是多区多段感应式探头与镜片对应位置和探测效果图,多区多段感应式多用于挂墙式安装,倾斜向下探测三个不同的区域。图(8)是多区多段圆锥体感应式

43、,多用于吸顶式安装,直接向下探测。采用双源探头配用圆形镜片感应方向图不似圆锥体,因为探头水平视角大于垂直视角而且出现Sa=Sb的现象,圆锥体效果图会中间凹陷。如果圆形镜片配用四源探头,感应方向图更趋似圆锥体,见图(8)探测效果图。多区多段感应式和多区多段圆锥体式感应区域宽广,多用于大面积探测。探头与镜片配合不符合要求,上图左中镜片上下放反,上图右中探头设置在镜片中间,均无远距离感应效果,下盲区加大,出现不感应现象。C、另类探测效果的方法。探头与镜片偏离,产生不同的探测方向和效果。探头偏上,探测方向向下,见下图左。同理,探头偏下,探测方向向上。探头偏左,探测方向向右,见下图中。同理,探头偏右,探

44、测方向向左。探头偏45度,降低人体活动受方向的限制,见下图右。探头偏45度且稍微倾斜,适宜探测狭长区域。D、增强探测动作灵敏度的方法。前面已经阐述区段数量越多被感应人体移动幅度就越小,因此,选用区段多且密的镜片就能增强探测动作灵敏度,人体只要在感应的有效范围内稍微移动就有效。段密度高的镜片在50mm长度有26段之多。E、增强抗干扰的方法。从前面阐述的原理中得知,区段数量少被感应人体移动幅度就要大,选用区段数量少的镜片就能减少误动作,一是人体运动幅度要大二是区段数量少的镜片形成局部探测,减少外围干扰源。菲涅耳(Fresnel)透镜系统 菲涅尔透镜作用有两个:一是聚焦作用,即将热释红外信号折射(反

45、射)在PIR上,第二个作用是将探测区域内分为若干个明区和暗区,使进入探测区域的移动物体能以温度变化的形式在PIR上产生变化热释红外信号。 菲涅尔透镜,简单的说就是在透镜的一侧有等距的齿纹.通过这些齿纹,可以达到对指定光谱范围的光带通(反射或者折射)的作用.传统的打磨光学器材的带通光学滤镜造价昂贵。菲涅尔透镜可以极大的降低成本。典型的例子就是PIR(被动红外线探测器)。PIR广泛的用在警报器上。如果你拿一个看看,你会发现在每个PIR上都有个塑料的小帽子。这就是菲涅尔透镜。小帽子的内部都刻上了齿纹。这种菲涅尔透镜可以将入射光的频率峰值限制到10微米左右(人体红外线辐射的峰值)。成本相当的低。 菲涅尔透镜的主要作用就是将探测空间的红外线有效地集中到传感器上。通过分布在镜片上的同心圆的窄带(视窗)用来实现红外线的聚集,相当于凸透镜的作用。这部分选择主要是看透镜窄带的设计及透镜材质。考虑透镜的参数主要有:光通量、不同透镜同心度、

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号