《用树状图和表格求概率(第2课时).ppt》由会员分享,可在线阅读,更多相关《用树状图和表格求概率(第2课时).ppt(28页珍藏版)》请在三一办公上搜索。
1、3.1用树状图与列表法求概率,行家看“门道”,例题欣赏P162,学以致用,例1 随机掷一枚均匀的硬币两次,到少有一次正面朝上的概率是多少?,总共有4种结果,每种结果出现的可能性相同,而至少有一次正面朝上的结果有3种:(正,正),(正,反),(反,正),因此至少有一次正面朝上的概率是3/4.,开始,正,反,正,反,正,反,(正,正),(正,反),(反,正),(反,反),请你用列表的方法解答,(正,正),(正,反),(反,正),(反,反),第二种方法:列表法,总共有4种结果,每种结果出现的可能性相同,而至少有一次正面朝上的结果有3种:(正,正)(正,反)(反,正),因此至少有一次正面朝上的概率为3
2、/4。,甲、乙两同学各拿一枚完全相同的硬币进行投掷实验,规定国徽为正面。两人同时掷出硬币为一次实验,在进行200次实验后,他们将向上一面的结果汇总如下表:,(1)根据表格提供的信息分别求出事件A、B、C发生的频率;(2)分别求出事件A、B、C发生的理论概率;(3)比较同一事件的频率与概率是否一致?,答:(1)事件A发生的频率为:事件B发生的频率为:事件C发生的频率为:,(2)树状图可以是:,事件A、B、C发生的理论概率分别为:P(A)=1/4=0.25,P(B)=2/4=0.5,P(C)=1/4=0.25.,(3)经过200次实验后事件B发生的频率与理论概率是一致的,事件A、C发生的频率与理论
3、概率略有误差。,理性的结论源于实践操作,是真是假,从一定高度随机掷一枚均匀的硬币,落地后其朝上的一面可能出现正面和反面这样两种等可能的结果.小明正在做掷硬币的试验,他已经掷了3次硬币,不巧的是这3次都是正面朝上.那么,你认为小明第4次掷硬币,出现正面朝上的可能性大,还是反面朝上的可能性大,还是一样大?说说你的理由,并与同伴进行交流.,随堂练习P165,第4次掷硬币,出现正面朝上的可能性与反面朝上的可能性一样大.,习题6.2 2.如果有两组牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一张牌,,2,1,两张牌的牌面数字和等于3。,(1)两张牌的牌面数字和等于4的概率是多少呢?,(2)两
4、张牌的牌面数字和为几的概率最大?,2,4,4,4,5,6,3,5,3,小明:,小颖:,小亮:,你认为谁做得对?并说出你的理由。,4,(1,3),(2,2),(3,1),用列表法求概率时,应注意各种情况出现的可能 性必须相同。,从小亮的表格中你还能获得哪些事件发生的概率呢?,你认为用列表法求概率时应注意些什么?,猜一猜.小明和弟弟在玩猜点数的游戏,规则是这样的:将红桃A至红桃5、黑桃A至黑桃5两组扑克牌分别洗匀,每次从两种花色中各抽出一张,抽后并放回洗匀,在抽之前猜一个数,如果每次抽出的两张牌的点数之和与猜的数相同算对,否则算错,谁猜对的多算赢。小明每次说的数不是4就是5;弟弟每次说的数不是6就
5、是7,那么谁赢的可能大呢?若你来猜会猜哪两个数呢?为什么?,解:所有可能出现的结果为,黑A,黑2,黑3,黑4,黑5,黑A,黑2,黑3,黑4,黑5,黑A,黑2,黑3,黑4,黑5,黑A,黑2,黑3,黑4,黑5,黑A,黑2,黑3,黑4,黑5,两张牌面数字和的所有结果为2,3,4,5,6,3,4,5,6,7,.,猜一猜,用表格表示概率,黑桃,红桃,牌面数字和所有可能结果,因为牌面数字和为6的概率最大,所以弟弟赢的可能性大。,猜一猜,用表格表示概率,1.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红色球、两个黄色球.如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次
6、都摸到黄色球的概率是 _.,带你进入尖子生行列,开始,红,黄,黄,(红,黄),黄,黄,红,黄,红,(黄,黄),(黄,红),(黄,黄),(黄,红),黄,(红,黄),2.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红色球、两个黄色球.如果第一次先从袋中摸出一个球后再放回摇匀,第二次再从袋中摸出一个,那么两次都摸到黄色球的概率是 _.,带你进入尖子生行列,3.有两组扑克牌,第一组是1和2,第二组是1、2和3,从两组中各抽一张,和等于4的概率是_;和不小于3的概率是_.,一.将一个均匀的硬币上抛三次,结果为三个正面的概率_.,解:,开始,反,正,正,反,反,正,正,反,反,反,正,反,
7、正,正,第一次:,第二次:,第三次:,总共有8种结果,每种结果出现的可能性相同,而三次正面朝上的结果有1种,因此三次正面朝上的概率为1/8。,1/8,1、掷两枚骰子,它们的点数和可能有哪些值?,用列表的方法求:(1)“点数和为7点”的概率;,(2)“两颗骰子点数相同”的概率;,(3)两颗骰子点数都是相同偶数的概率。,(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),二,1 一个家庭有两个孩子,从出生的先后顺序和性别上来分,所有可能出现的情况()(A)男女,男男,女男(B)男女,女男(C)男女,男男,女
8、男,女女,(D)男男,女女,C,随堂练习,用实际行动来证明我能行,2.小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,问小明正好穿的是相同的一双袜子的概率是多少?,随堂练习,用实际行动来证明我能行,2.小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,问小明正好穿的是相同的一双袜子的概率是多少?,解:设两双袜子分别为A1、A2、B1、B2,则,所以穿相同一双袜子的概率为,随堂练习,用实际行动来证明我能行,第一次所选袜子,第二次所选袜子,所有可能结果,A1,A2,B1,B2,A1,A2,B1,B2,第一次所选袜子,第二
9、次所选袜子,所有可能结果,A1,A2,B1,B2,A1,A2,B1,B2,(A1,A2),(A1,B1),(A1,B2),(A2,A1),(A2,B1),(A2,B2),(B1,A1),(B1,A2),(B1,B2),(B2,A1),(B2,A2),(B2,B1),用表格求所有可能结果时,你可要特别谨慎哦,3、有长度分别为2CM,2CM,4CM,5CM的小棒各一根,放在不透明的纸盒中,每次从中任意取一根小棒(不放回),取了三次,取得的三根小棒恰好能构成一个三角形的概率是多少?,随堂练习,用实际行动来证明我能行,4、在两只口袋里分别放黑白小球各一个(他们仅颜色不同),抖匀后在第一个口袋里摸出一个
10、小球,记下颜色后,放在第二个口袋里,抖匀后再在第二个口袋里摸出一个小球,两次摸到小球颜色相同的概率是多少?,随堂练习,用实际行动来证明我能行,5、两个转盘都被分成黑白相等的两部分,甲乙两人用它们做游戏,如果两个指针所停区域的颜色不同,则乙获胜,在这个游戏中()(A)甲获胜的可能性大(B)乙获胜的可能性大(C)两人获胜的可能性一样大(D)不能确定谁获胜的可能性大,C,随堂练习,用实际行动来证明我能行,试一试:一个家庭有三个孩子,若一个孩子是男孩还是女孩的可能性相同(1)求这个家庭的3个孩子都是男孩的概率;(2)求这个家庭有2个男孩和1个女孩的概率;(3)求这个家庭至少有一个男孩的概率,解:,(1)这个家庭的3个孩子都是男孩的概率为1/8;,(2)这个家庭有2个男孩和1个女孩的概率为3/8;,(3)这个家庭至少有一个男孩的概率为7/8.,归纳总结,画龙点睛,1、本节课你有哪些收获?有何感想?2、用列表法求概率时应注意什么情况?,我有哪些收获?,用列表法求随机事件发生的理论概率(也可借用树状图分析),学会了,明白了,用列表法求概率时应注意各种情况发生的可能性务必相同,懂得了,合作交流的重要性,利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.,