《用样本的数字特征估计总体的数字特征(上课用).ppt》由会员分享,可在线阅读,更多相关《用样本的数字特征估计总体的数字特征(上课用).ppt(29页珍藏版)》请在三一办公上搜索。
1、(一)众数、中位数、平均数,2.2.2 用样本的数字特征估计总体的数字特征,一 众数、中位数、平均数的概念,中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.,众数:在一组数据中,出现次数最多的数据叫做这组数据的众数,平均数:一组数据的算术平均数,即,问题1:众数、中位数、平均数这三个数一般都会来自于同一个总体或样本,它们能表明总体或样本的什么性质?,平均数:反映所有数据的平均水平,众数:反映的往往是局部较集中的数据信息,中位数:反映处于中间部位的数据信息,1、求下列各组数据的众数,(1)、1,2,3,3,3,5,5,8,8,8,9,
2、9,众数是:3和8,(2)、1,2,3,3,3,5,5,8,8,9,9,众数是:3,2、求下列各组数据的中位数,(1)、1,2,3,3,3,4,6,8,8,8,9,9,(2)1,2,3,3,3,4,8,8,8,9,9,中位数是:5,中位数是:4,二、众数、中位数、平均数与频率分布直方图的关系,0.1,0.2,0.3,0.4,0.5,O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t),众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标2.25。,如何在频率分布直方图中估计众数,可将众数看作直方图中面积最大长方形的“中心”,0.5,2.5,2,1.5,1,4,
3、3.5,3,4.5,频率组距,0.04,0.08,0.15,0.22,0.25,0.14,0.06,0.04,0.02,前四个小矩形的面积和=0.49,后四个小矩形的面积和=0.26,2.02,如何在频率分布直方图中估计中位数,0.01/0.25=x/0.5所以x=0.02,可将中位数看作整个直方图面积的“中心”,如何在频率分布直方图中估计平均数,=2.02,=2.02,如何在频率分布直方图中估计平均数,平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和(即频率乘以组中值的和)。,可将平均数看作整个直方图面积的“重心”,1.(2013年福建高考改编题)某校从高一年
4、级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:40,50),50,60),60,70),70,80),80,90),90,100加以统计,得到如图所示的频率分布直方图。据此估计,该校模块测试的平均分约为。,71,中位数多少众数是多少,70,65,方差与标准差,(二),情境一;,甲.乙两名射击队员,在进行的十次射击中成绩分别是:甲:10;9;8;10;8;8;10;10;9.5;7.5乙:9;9;8,5;9;9;9.5;9.5;8.5;8.5;9.5,试问二人谁发挥的水平较稳定?,分析:甲的平均成绩是9环.乙的平均成绩也是9环.,一.实例引入,情境二:,某农场种植了甲、乙两种玉米苗,从
5、中各抽取了10株,分别测得它们的株高如下:(单位cm),甲:31 32 35 37 33 30 32 31 30 29,乙:53 16 54 13 66 16 13 11 16 62,问:,哪种玉米苗长得高?,哪种玉米苗长得齐?,甲,37(最大值),29(最小值),8,乙,66(最大值),11(最小值),55,极 差,甲:31 32 35 37 33 30 32 31 30 29,乙:53 16 54 13 66 16 13 11 16 62,极差:,一组数据的最大值与最小值的差,极差越大,数据越分散,越不稳定,极差越小,数据越集中,越稳定,在一定程度上表明了样本数据的分散程度,与平均数一起,
6、可以给我们许多关于样本数据的信息.显然,极差对极端值非常敏感,注意到这一点,我们可以得到一种“去掉一个最高分,去掉一个最低分”的统计策略.,为了对两人射击水平的稳定程度,玉米生长的高度差异等做个合理的评价,这里我们引入了一个新的概念,方差和标准差.,设一组样本数据,其平均数为,则,称s2为这个样本的方差,,称为这个样本的标准差,分别称为样本方差、样本标准差,它的算术平方根,x1,x2,xn,样本中各数据与样本平均数的差的平方和的平均数叫做样本方差。样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。,例1.计算数
7、据89,93,88,91,94,90,88,87的方差和,解:,.,所以这组数据的方差为5.5.,练习:若甲、乙两队比赛情况如下,下列说法哪些 说法是不正确的:,1、平均来说,甲的技术比乙的技术好;2、乙比甲技术更稳定;3、甲队有时表现差,有时表现好;4、乙队很少不失球。,全对,如果数据,的平均数为,,方差为,(1)新数据,的平均数为,,方差仍为,(2)新数据,的平均数为,,方差为,(3)新数据,的平均数为,,方差为,,则,方差的运算性质:,例2:甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm),试根据这组数据估计哪一种水稻品种的产量比较稳定,解:,1、在一次歌手大奖赛上
8、,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为_;,2、已知数据 的方差为2,则求数据 的方差,9.5,0.016,三.当堂反馈,8,1.用样本的数字特征估计总体的数字特征分两类:a.用样本平均数、众数、中位数估计总体平均数、众数、中位数。b.用样本标准差、方差估计总体标准差、方差。样本容量越大,估计就越精确。2.平均数对数据有“取齐”的作用,代表一组数据的平均水平。3.标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度。,小结,再见,甲、乙两人在相同条件下各射靶10次,每次射靶的
9、成绩情况如图所示:,(1)请填写表:,(2)请从下列四个不同的角度对这次测试结果进行分析:从平均数和方差相结合看(分析谁的成绩更稳定);从平均数和中位数相结合看(分析谁的成绩好些);从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);从折线图上两人射击命中环数的走势看(分析谁更有潜力),(2)请从下列四个不同的角度对这次测试结果进行分析:从平均数和方差相结合看(分析谁的成绩更稳定);从平均数和中位数相结合看(分析谁的成绩好些);,解:(2)平均数相同,,甲的成绩比乙稳定,平均数相同,甲的中位数乙的中位数,乙的成绩比甲好些,解:平均数相同,命中9环及9环以上的次数甲比乙少,乙的成绩比甲好些,甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力,从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);从折线图上两人射击命中环数的走势看(分析谁更有潜力),