不可逆过程热力学基础.ppt

上传人:牧羊曲112 文档编号:5046087 上传时间:2023-05-31 格式:PPT 页数:37 大小:1.19MB
返回 下载 相关 举报
不可逆过程热力学基础.ppt_第1页
第1页 / 共37页
不可逆过程热力学基础.ppt_第2页
第2页 / 共37页
不可逆过程热力学基础.ppt_第3页
第3页 / 共37页
不可逆过程热力学基础.ppt_第4页
第4页 / 共37页
不可逆过程热力学基础.ppt_第5页
第5页 / 共37页
点击查看更多>>
资源描述

《不可逆过程热力学基础.ppt》由会员分享,可在线阅读,更多相关《不可逆过程热力学基础.ppt(37页珍藏版)》请在三一办公上搜索。

1、1,第六章 不可逆热力学基础,2,?,6-1 概 述,自然界的一切实际过程都是不可逆的。不可逆过程并不能使能量消失,但发生了能量的耗散。过程不可逆性的本质微观表现:孤立系统内的一切不可逆过程是使系统的分子(或其它微小单元)的运动从某种有序的状态向无序状态转化,最后达到稳定平衡状态(最无序的状态),并保持这种状态不再变化。,热力学第二定律指出了孤立系统内一切过程都是使系统的状态由有序向无序转化并最终保持最无序状态的。,热寂说、生物进化,。,3,自组织现象,各种生物都是由各种细胞按精确规律组成的高度有序的机构:人大脑是由150亿个左右神经细胞组成的极精密及有序组织;每个细胞至少含有1个DNA(或R

2、NA),1个DNA分子可能 由1081010个原子组成,这些原子构成4种不同的核苷酸碱基(腺嘌呤A,胸腺嘌呤T,鸟嘌呤G,胞嘧啶C),他们都与糖基S连 接,糖基又与磷酸基P交替组合成长链。每个DNA分子有两个 长链,他们靠A和T以及G和C间的氢键结合在一起,环绕成螺 旋状。各种机体不同,长链中AT对和CG对可多至106109 个,按一定严格次序排列。一个生物体的全部遗传信息都编码 在这些核苷酸碱基排列的次序中!而这种结构的来源是生物的 食物中无序的原子!,生命过程的自组织现象,系统内部由无序变为有序使其中大量分子按一定的规律运动的现象,4,?,DNA示意图,生命过程从分子、细胞到有机个体和群体

3、的不同水平上还 呈现出时间有序的特性,表现为随时间作周期性变化的振荡 行为,如鱼类的洄游,等。,生物体的生长和物种的进化也是从无序到有序的发展。如受精细胞发展成各种复杂有序的器官,而所有细胞都是由很多原来无序的原子构成。生物的进化是由简单到复杂、由低级到高级或者说由较有序向更加有序、精确有序发展的过程。,非生命现象与生命现象有不同的支配规律,5,无生命过程的自组织现象,高空中水汽凝结形成非常有序的六角形雪花,化学实验中空间有序(耗散结构)例利色根现象,化学实验中时间有序(耗散结构)例BZ反应,在25左右由溴酸钾(KBrO3)、丙二酸 CH2(COOH)2和硫酸铈Ce(SO4)2组成的混合物,溶

4、解于硫酸中,加以搅 拌,则溶液的颜色会在红色与蓝色之间振荡。振荡周期是分(min)的数量 级,现象的寿命是小时的数量级。颜色的变化反映离子浓度Br+、Ce3+/Ce4+的变化,附图是离子浓度振荡的电势图。,在一个浅盘内将碘化钾溶液加到含有硝化银的胶体介质中,会形成一圈圈间隔有规律的沉 淀环(在细管中会形成一条条间隔有规律的沉淀带)。,6,物理实验中空间有序对流有序现象。贝纳特於1900加热盘中薄层流体,开始时温度梯度不大,流体中只有热传导未见明显扰动。当温度梯度超过某一临界值时,原来静止的液体中突然出现许多规则的蜂房样六角形对流格子,液体内部的运动转向宏观有序化。,时间有序的物理自组织现象激光

5、。输入功率小于临界值时,激光器向普通灯泡一样,发光物质的个原子接受能量后各自独立发光,每次发光时间10-8s,所发波列长度约3m,当输入功率大于某临界值时,各原子集体一致行动,发出频率和振动方向都相同的博列长度可达30万千米的“相干光波”激光。发光物质的原子处于非常有序的状态,不断进行着自 组织过程。,7,正是无生命世界和有生命世界同有自组织现象的事实,促使人们想到这 两个世界在这方面可能遵循相同的规律,也激发人们去创立有关的理论。普里高津在把物理和生物过程结合起来研究时提出耗散结构理论(1967年);哈肯在研究激光发射过程的基础上,把它和生物过程等加以类比时创立了协同论(1976年)。耗散结

6、构理论和协同论采用不同的方法来说明自组织现象,得出了很多有价值的结果,前者着重用热力学方法进行分析,后者着重于统计原理的应用。,寻找从无序到有序的转化规律,研究系统离开平衡态行为的热力学分支非平衡态热力学或不可逆过程热力学,8,线性非平衡态热力学 研究外界影响产生的促使变化的势(如T、p)不大,因而在系统内引起的响应(如热流或位移)也不很大,可近似认为二者间为简单的线性关系(此时可认为系统对平衡态的偏离很小)的状态下系统行为的热力学。,最小熵产原理表明:在系统偏离平衡状态时,系统中 的不可逆过程使熵产生出来,而在系统偏离平衡状态 很小时,随过程进行,熵产率(即)要减小,在达到某个定态时熵产为最

7、小。,最小熵产原理(普里高京,1945)在接近平衡态的条件下,和外界强加的限制相适应的非平 衡稳定状态的熵产Sg具有最小值。线性非平衡态热力学的重要原理,9,非线性非平衡态热力学 研究当外界对系统的影响过于强烈,在系统内部引起的响应和它不成线性关系时的状态远离平衡的状态下系统行为的热力学。,最小熵产原理指出:当外界迫使系统离开平衡态时,系统中要进行不可逆过程而引起能量的耗散。但系统 将总是选择一个能量耗散最小,即熵产最小的状态。平衡态则是这种稳定态(非平衡稳定状态)的特例,此时熵产为零(熵已达极大值而不能再增大)。,10,远离平衡的状态是指:当外界对系统的影响过于强烈,以至它在系统内部 引起的

8、响应和它不成线性关系时的状态。分支理论 当系统远离平衡时,它们可以 发展到某个不随时间改变的稳定态。但是这时系统的熵不再具有极值行为,最小熵产原理也不再有效。一般地说,远离平衡的稳定态不再能用熵这样的状态函数来描述。因此这时过程发展的方向不能依靠纯粹的热力学方法来确定,必须同时研究系统的动力学的详细行为。图中横坐标表示外界对系统的控制参数,它的大小表示外界对系统影响的程度和系统偏 离平衡态的程度;纵坐标X表示表征系统稳定态的某个参数,不同的X值表示 不同的定态。与0对应的定态X0表示平衡态,随着偏离0,X也就偏离平衡态,但在较小时,系统的状态很类似于平衡态而且具有稳定性。表示这种 定态的点形成

9、线段(a),这是平衡态的延伸,因此这一段叫热力学分支。,11,当c时,例如贝纳特流体加热实验中,流体的温度梯度超过某定值或激光器的输入功率超过某一定值时,曲线段(a)的延续(b)上各非平衡定态变得不稳定,一个很小的扰动就可引起系统的突变,离开热力学分支而跃迁 到另外两上稳定的分支(c)或(c)上。这两个分支上的每一个点可能对应于某种时空有序状态。由于这种有序状态是在系统离开平衡状态足够远或者说在不可逆的耗散过程足够强烈的情况下出现的,所以这种状态被普里高津叫做耗散结构。分支(c)或(c)就叫做耗散结构分支。在=c处热力学分支开始分岔(分岔的数目和行为决定于系统的动力学性质),这种现象叫分岔现象

10、 或分支现象。在分支以前,系统的状态保持空间均匀性和时间不变性,因而具 有高度的时空对称性;超过分支点后,耗散结构对应于某种时空有序状态,就破坏了系统原来的对称性。因此这类现象也常常叫做对称性破缺不稳定性现 象。,12,随着控制参数进一步改变,各稳定分支又会 变得不稳定而导致所谓二级分支或高级分支现象。高级分支现象说明系统在远离平衡态时,可以有多种可能的有序结构,因而使系统可表现出复杂的时空行为。这可以用来说明生物系统的多种复杂行为。在系统偏离平衡态足够远时,分支越来越多,系统就具有越来越多的相互不同的可能的耗散结构,系统处于哪种结构完全是随机的,因而体系的瞬时状态不可预测。这时系统又进入一种

11、无序态,叫混沌状态,它和热力学平衡的无序态的不同在于,这种无序的空间和时间的尺度是宏观的量级,而在热力学平衡的无序中,空间和时间的特征大小是分子的特征量级。从这种观点看,生命是存在于这两种无序之间的一种有序,它必须处于非平衡的条件下,但又不能过于远 离平衡,否则混沌无序态的出现将完全破坏生物的有序。近年来对混沌现象的研究取得了令人鼓舞的进展。人们不仅在理论上发现了一些有关发生分支现象和混沌现象的普遍规 律,并且已在自然界中和实验室内观测到了混沌现象。,13,非平衡态热力学关于分支现象的理论表明它并没有抛弃经典热力学的 基本理论,而是给以新的解释和重要补充,从而使人们 对自然界的发展过程有一个比

12、较全面的认识:在平衡态附近,发展过程主要 表现为趋向平衡态或与平衡态有类似行为的非平衡稳定态,并总是伴随着无序的增加与宏观结构的破坏。而在远离平衡的条件下,非平衡定态可以变得不稳定,发展过程可能发突变,因而导致宏观结构的形成和宏观有序的增加。这种认识不仅为弄清物理学和化学中各种有序现象的起因指明了方向,也为 阐明像生命的起源、生物进化以至宇宙发展等等复杂问题提供了有益的启示,更有助于人们对宏观过程不可逆性的本质及其作用的认识。,系统内部究竟是什么因素导致定态的不稳定而发生分支的呢?涨落的作用。,14,通过涨落达到有序,无论平衡态还是非平衡定态都是系统在宏观上不随时间改变的状态,实际上由于组成系

13、统的分子仍在不停地做无规则运动,因此系统的状态表现为宏观均匀态,但在局部上经常与宏观平均态有暂时的偏离。这种自发产生的微小偏离称为涨落。另外宏观系统所受的外界条件也或多或少地总有一些变动。因此,宏观系统 的宏观状态总是不停地受到各种各样的扰动。随着控制条件的改变,有的涨落分量随时间很快地哀减掉,有的涨落分量却会随时间长大,以致其振幅终于达到宏观尺度而使系统进入一种宏观有序状态,这样就形成了耗散结构。远离平衡态的系统的定态的不稳定以致发展到耗散结构的出现就植根于这种涨落,普里高津把这个过程叫 做通过涨落达到有序。,15,协同论认为分 子(或子系统)之间的相互作用或关联引起的协同作用使得系统从无序

14、转化为有序。一般来讲,系统中各个分子的运动状态由分子热运动(或子系统的 各自独立的运动)和分子间的关联引起的协同运动共同决定。当分子间的关联能量,小于独立运动能量时,分子独立运动占主导地位,系统就处于无序状态(如气体),当分子间的关联能量大于分子的运动能量时,分子的独立运动 就受到约束,它要服从由关联形成的协同运动,于是系统就显出有序的特征。涨落是系统中各局部内分子间相互耦合变化的反映。系统在偏离平衡态较小 的状态时,独立运动和协同运动能量的相对大小未发生明显的变化,涨落相 对较小。在控制参数变化时,这两种运动的能量的相对大小也在变化,当控制参数达到临界值时,这两种运动能量的相对地位几乎处在均

15、势状态,因此 局部分子间可能的各种耦合相当活跃,使得涨落变大。每个涨落都具有特定的内容,代表着一种结构或组织的“胚芽状态”。涨落的出现是偶然的,但只有 适应系统动力学性质的那些涨落才能得到系统中绝大部分分子的响应而波及整个系统,将系统推进到一种新的有序结构耗散结构。,16,6-2 不可逆过程热力学方程,一、局部平衡假设,平衡状态的系统可用状态参数来描述系统的各种宏观物理性质,如温度、压力、体积、热力学能、焓、熵等等,状态参数是平衡态范畴内的概念。,局部平衡假设是把处在不平衡状态的体系,分割成许多小部分,假设每小部分各自近似地处于平衡状态。(当然每一小部分在微观上必需仍包含有大量的粒子)对每一小

16、部分体系,一切热力学量均可有确切的值,就可用状态参数来描述这些部分。热力学能、熵等广延参数,将各部份的数值相加,即可得整个体系的值;而温度和压力这类强度参数,就没有全系统的统一值。,17,二、不可逆过程的基本方程,不可逆的微元过程,熵流,熵产,单位时间内系统内部不可逆过程引起的熵变称为“熵产率”用表示。,不可逆过程热力学中,假定在局部平衡假设下的每一宏观分体系中平衡态的吉布斯关系仍然适用,即:,不可逆过程热力学的基本方程。,18,假设:无质量迁移;不作功;密度均匀;稳定,d时间内,dV体积内热力学能增量,考虑x方向,流入:,流出:,净增量:,三、熵产率计算示例,单纯导热,热流,19,即,对封闭

17、体系、不作功时,单位质量吉布斯方程为:,所以,据能量守衡方程得,考虑 x y z 各方向:,20,式 可改写为:,式中,称为熵通量。,(a)式表明系统单位时间单位体积的熵增加量,与外界换热熵流:,内部不可逆熵产率:,若系统各向同性,据傅立叶定律,=f(T),但 0,故 0,(a),(b),21,杆子处在稳定状态而非平衡状态。其各部分熵均不随时间改变,所以整根杆子的熵也不随时间改变,传热过程可逆,则热源T2熵变化率即为流出熵的速率:,热源T1收益熵的速率为:,杆子与热源构成的整个系统的总熵变为:,沿杆单纯导热,22,考察杆上距杆端x处单位时间单位截面积的熵流(即熵流密度JS),热流密度,W/m2

18、,沿杆长为定值。由于T随位置而改变,所以各截面上的熵流密度在改变,单位体积的熵产率,对于x 杆段,,23,?,电流沿导线的流动,温度为T的导线与电源连接,由于电位差 作用,电流密度为 的电流在导线内流动,据能量守恒,发热等于电功,所以,dV体积导线内的总熵产,仅考虑导电(没有导热)时的熵产率,式(b)在一维导热时的应用,沿杆件x处单位体积的熵产率,系统与外界交换电,与熵增无关,即无熵流。熵产等于熵增。,24,6-3 昂色格(Onsager)倒易关系,一、热力学流和力,一切不可逆过程,热传导系统中温度差引起的热传递,扩散混合物的浓度差引起质量迁移,内摩擦或粘滞流体运动时速度差引 起动量的迁移,导

19、电导电体中的电位差引起电荷迁移,由于物系的某一客观性质的不均匀而引起的迁移现象,25,把单位时间内通过单位面积所迁移的一切量(质量、能量、动量、电量)等通称为流,以J表示,把引起迁移现象的动力称为力,以X表示,以上各种迁移现象的经验定律可统一表述为:流与力成正比。,唯象系数,是独立于X和J的系数。,二、交叉现象,两个或两个以上不可逆过程同时发生时,相互干扰而引起的新现象。,26,例如 当热传导与电传导同时发生时:珀尔帖(Peltier)效应电位梯度对热流的影响;西贝克(Seebeck)效应温度梯度对电流的影响;扩散和热传导同时存在时:杜伏(Duffour)效应浓度梯度对热流的影响;索赖脱(So

20、ret)效应温度梯度对物质流影响。,实验表明,交叉现象即几种不可逆过程同时出现的时候,有几种力同时作用,几个量同时发生迁移,可在相应的唯象定律中添加交叉项表示。,第i种流,如电流、热流、物质流等,第k种力,指温度、电位、浓度等,Lik:ik单一现象唯象系数;ik交叉唯象系数。物理意义:一个单位的第k种力所引起的第i种量的迁移,27,两种不可逆迁移过程叠加,方程组也可写成矩阵形式,例如,考察伴随有热传导的物质扩散现象,两种过程都能引起能量的传输。扩散过程是通过质量传递而实现能量传递;热传导是通过分子振动传输能量。,每一种过程都孤立起来考虑,则导热方程中没有扩散引起的项:,扩散方程中没有导热引起的

21、项:,因各个扩散的分子都携带能量,故物质的扩散对能量流有影响,扩散影响应该包含在热流通量J1中;热传导对扩散有影响,描述质量扩散的方程内应包含引起热传导的力:于是,28,质量传递(扩散)对能量传递影响的交叉唯象系数,热传输对质传输的影响的交叉唯象系数,又如在电位梯度和温度梯度同时作用下热流和电流可写为:,珀尔帖系数描述电位梯度对热传导影响的交叉唯象系数,西贝克系数表示温度梯度对电流的影响的交叉唯象系数,这两种唯象定律分别建立在各自实验的基础上,流和力是各自单独选用。但据第二定律,任何产生耗散效应的过程,都将导致熵产生,所以利用熵产生概念统一各种不可逆传输过程中流和力的选择,建立相互干扰现象之间

22、的内在联系是可能的,29,三、昂色格倒易关系,是实验事实的综合,它指出了第k种力对第i种流的影响,但交叉唯象系数需要通过实验确定。同时对任何一个不可逆程,流和力的选择不是唯一的,这些都影响了方程的使用。,1931年昂色格从微观可逆性导出了昂色格倒易关系。1945年西尔米(Casimir)做了重要的修正,指出只有按下列原则选择流和力:“各种流和相应力的乘积之和等于熵产率和温度的乘积”,即:,时,可以得交叉唯象系数之间存在下列关系:,30,昂色格倒易关系作用:,减少需通过实验确定的Lik的数量,指出各种力之间相互影响是等价的,无需区分其 重要性。,昂色格理论的基本要素,31,6-4 不可逆过程热力

23、学应用举例绝热扩散,一、基本现象,1856年斐克(Fick)建立了经典扩散定律,认为扩散速率正比于浓度梯度,质量传导可与热传导比拟。斐克定律中比例常数称为扩散系数。实验数据显示,扩散系数随试验条件而变化。,考虑多孔膜或孔径与分子自由程相比相对小的管子连接的两绝热容器中物质扩散的现象。这种现象涉及:索赖脱效应温度梯度的存在导致浓度梯度的建立 杜伏效应由浓度梯度产生的温度梯度不均匀索赖脱效应的逆效应。,适当选择“流”和“力”,减少由实验确定的系数的数量。,32,二、流和力的选择,和构成的系统,两部分之间有小孔相通。两部分体积相同,均为V。两部分热静平衡,每一部分的质量m,热力学能U均相同。系统与外

24、界隔离,因此部分的变化U和V,在部分中引起变化U和V。这些变化造成熵的变化:,S的表达式类似,仅U和m线性项应是负的。,所以系统的总熵变为,33,系统与外界隔离,所以的S时间变化率:,熵产率是和的总值,单位体积的熵产率为:,34,据昂色格理论,对本系统,据不可逆热力学基本方程:,本系统m和V均不变,因此,35,考虑到,对于封闭体系,=,=,36,定义热力学能流,若无质量流,Jm0,则,令,表示由于温度梯度而驱使系统建立压力梯度的关系。因此,两个关联的系统,随着两系统间的浓度梯度(更准确地说化学位梯度)的确立,会建立起压力差,直至hU*。,37,气体流经多孔柱塞时,对于理想气体,从柱塞的一侧到另一侧积分,或,分子流的Knudse方程,对于有限厚度的柱塞x,这就意味着如果Q*是负值,例如热传导,压力差和温度差符号相同,分子从冷侧流向热侧。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号