《课题等差数列教案1.doc》由会员分享,可在线阅读,更多相关《课题等差数列教案1.doc(3页珍藏版)》请在三一办公上搜索。
1、课 题:2.2.1 等差数列(一)教学目的:1明确等差数列的定义,掌握等差数列的通项公式; 2会解决知道中的三个,求另外一个的问题 教学重点:等差数列的概念,等差数列的通项公式教学难点:等差数列通项公式的推导过程体现的数学思想方法授课类型:新授课课时安排:1课时内容分析: 本节是等差数列这一部分,在讲等差数列的概念时,突出了它与一次函数的联系,这样就便于利用所学过的一次函数的知识来认识等差数列的性质:从图象上看,为什么表示等差数列的各点都均匀地分布在一条直线上,为什么两项可以决定一个等差数列(从几何上看两点可以决定一条直线)教学过程:一、复习引入:上两节课我们学习了数列的定义及给出数列和表示的
2、数列的几种方法列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点下面我们看这样一些例子。(略) 请同学们仔细观察一下,看看以上几个数列有什么共同特征?共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字等差数列 二、讲解新课: 1等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示) 公差d一定是由后项减前项所得,而不能用前项减后项来求;对于数列,若=d (与n无关的数或字
3、母),n2,nN,则此数列是等差数列,d 为公差2等差数列的通项公式:第二通项公式: d= 3等差中项三、例题讲解例1 求等差数列8,5,2的第20项 -401是不是等差数列-5,-9,-13的项?如果是,是第几项?解:由n=20,得由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得成立解之得n=100,即-401是这个数列的第100项例2 在等差数列中,已知,求,解法一:,则 解法二: 小结:第二通项公式 例3 已知数列的通项公式,其中、是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么? 分析:由等差数列的定义,要判定是不是等差数列,只要看(n2)是不是一个与n无关的常数解:当n2时, (取数列中的任意相邻两项与(n2)为常数是等差数列,首项,公差为p注:若p=0,则是公差为0的等差数列,即为常数列q,q,q,若p0, 则是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q.数列为等差数列的充要条件是其通项=pn+q (p、q是常数)称其为第3通项公式判断数列是否是等差数列的方法是否满足3个通项公式中的一个四、练习:(第39页1题)五、小结.六、课后作业:七、课后记:3