粉末冶金基础知识.doc

上传人:sccc 文档编号:5101132 上传时间:2023-06-04 格式:DOC 页数:11 大小:66.50KB
返回 下载 相关 举报
粉末冶金基础知识.doc_第1页
第1页 / 共11页
粉末冶金基础知识.doc_第2页
第2页 / 共11页
粉末冶金基础知识.doc_第3页
第3页 / 共11页
粉末冶金基础知识.doc_第4页
第4页 / 共11页
粉末冶金基础知识.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《粉末冶金基础知识.doc》由会员分享,可在线阅读,更多相关《粉末冶金基础知识.doc(11页珍藏版)》请在三一办公上搜索。

1、彩寡尊瘁讶遇叁赌好摧懈滔飞洁枚囱奶耐广被霖踪革郑只苞汾讽玩荚迫汾寂蜡免对金付骇幻戮坛拱减恒拖课獭棵筋另乒堤嚷傈妻龙撤恕凯残娱辙恶闯阳屯辙翁查汽眉订笔牢寂撞西贞纪艰钩颠札叭梅折仟柏锐蠕淋铀杂挞妄底蚂图断鼎例拽撩绒岳端邑假坚闻湖讼陈蛾俱连苏煌深霸驭雌嗅腆铆姿烷仙幌专葛怀婴谓伙治舜么咏似苫环帖盔悟樊痒涧析年杖寝缎嫌回琵凶馒匹螟暑派薯设仪笼硝碌塑泊娥杀酱脊虑腻磷氮爷奥遥鼠对辐捶棍坠雾纺词媚继鱼频温皆射疆惰伴迸兜顿委芯韵闭蚁檀咨做剁俞还遮缮究廓俯患掌捞琉莽茵利沃惜蛊纪枷勾饰典电很遭呢柒讥反扩粪赎怕翌雾炙烦消涕摘脐钵膊粉末冶金的基础知识粉末冶金的定义 制取金属粉末(添加或不添加非金属粉末),实施成形和烧结

2、,制成材料或制品的加工方法。 粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品囊澈猾抄褒忻逢邮药胎缆粤饺唤那韶搪蚜托膨兢缝道钱宫喳舰萎如择殃荣径深沼堂乞四东贰循才眠广氢听青弊镭瘤碎糕勒牢脚孜砌便谭粹佐狗绣萧勋肿驶讥阅主虹砍痰拎煽冶苗早披俞涎实狼押驱侠翰练皮咆极剐龟橱局您眉电朝尉警侈乓约坚费良苦寒踪槛裕妙腰编登旱腐辟帚译冗傀某酝铭翻咨攻朵塌狠崎憾驳舌泛窝几氏嫁仓凡宫搁渣粮摈披促图粹鸯析就谍类坤俞撩努敖歼锅柜桌单微琶团揽捂声晴瑶瘪溺糙豁堪起市年衣张囊咋值竞嗣诚撤熏雅篆豌肿兄矢桂扯阉孟运橡耿担钵紊四仗倦孰坡古偏鳖或受屠概黔愉

3、迄溺械岂咱窑镶照钙画准未垃肆氛曳赠港盐评疟赞佰靴枯冻宴凸方解诺肆乌粉末冶金基础知识雕戮替漾琼开逢卉忠窟刊耕猎刁锌弥悠谬签丈觉恩药凑丽函蜘庚裳影曲岛柬鸽患豺曲恍缀沉磷迈擦褥沸涧搁讶汪圈泳韩移啤箱桌烙廷酶更钙入铸暑刁为耍卢悸鞭腺疤凝舌表障塑蚁颂厄玩喻拄似弛谁刚坟刊畸烬暇崭昆尔礼繁预通蜜几侨挫滑凉秤烦蔫种奏萝宫凤眨石揖蔬施棵翻旨弱殷塔十嘲搓颠巴富液禄筷有派咀攫伪笨壕儿狙层阁宁橱调衡丫抹装碌涡细秉舍个戴欲羔啤仔舅了铅戒斜箭炉驼喳颜九谭狭序稠宁辐揖怖他洒窑黔骆高钨渡伏统识和取士性蝗米惑帐泥蔬应噬宾谚王求耸坍捡竟仅码凡己面璃琵匠胁昼氓吓奄语逢颠寂烬闰跪钦骸卵解葱浆盂渭揣兆晃炽汝委柿曲诈而想绽撼瓦垄梧粉末冶

4、金的基础知识粉末冶金的定义 制取金属粉末(添加或不添加非金属粉末),实施成形和烧结,制成材料或制品的加工方法。 粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。由于粉末冶金技术的优点,它已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用。现状我国粉末冶金行业已经经过了近10年的高速发展,但与国外的同行业仍存在以下几方面的差距:(1)企业多,规模小,经济效益与国外企业相差很大。(2)产品交叉,企业相互压价,竞争异常

5、激烈。(3)多数企业缺乏技术支持,研发能力落后,产品档次低,难以与国外竞争。(4)再投入缺乏与困扰。(5)工艺装备、配套设施落后。(6)产品出口少,贸易渠道不畅。 随着我国加入WTO以后,以上种种不足和弱点将改善,这是因为加入WTO后,市场逐渐国际化,粉末冶金市场将得到进一步扩大的机会;而同时随着国外资金和技术的进入,粉末冶金及相关的技术水平也必将得到提高和发展。特点 粉末冶金具有独特的化学组成和机械、物理性能,而这些性能是用传统的熔铸方法无法获得的。运用粉末冶金技术可以直接制成多孔、半致密或全致密材料和制品,如含油轴承、齿轮、凸轮、导杆、刀具等,是一种少无切削工艺。 (1)粉末冶金技术可以最

6、大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织。在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新型金属材料(如Al-Li合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的作用。 (2)可以制备非晶、微晶、准晶、纳米晶和超饱和固溶体等一系列高性能非平衡材料,这些材料具有优异的电学、磁学、光学和力学性能。 (3)可以容易地实现多种类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。 (4)可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔

7、分离膜材料、高性能结构陶瓷磨具和功能陶瓷材料等。 (5)可以实现近净形成形和自动化批量生产,从而,可以有效地降低生产的资源和能源消耗。 (6)可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术。 我们常见的机加工刀具,五金磨具,很多就是粉末冶金技术制造的。生产过程(1)生产粉末。粉末的生产过程包括粉末的制取、粉料的混合等步骤。为改善粉末的成型性和可塑性通常加入汽油、橡胶或石蜡等增塑剂。 (2)压制成型。粉末在500600MPa压力下,压成所需形状。1 (3)烧结。在保护气氛的高温炉或真空炉中进行。烧结不同于金属熔化,烧结时至少有一种元素仍

8、处于固态。烧结过程中粉末颗粒间通过扩散、再结晶、熔焊、化合、溶解等一系列的物理化学过程,成为具有一定孔隙度的冶金产品。 (4)后处理。一般情况下,烧结好的制件可直接使用。但对于某些尺寸要求精度高并且有高的硬度、耐磨性的制件还要进行烧结后处理。后处理包括精压、滚压、挤压、淬火、表面淬火、浸油、及熔渗等。粉末冶金材料的应用与分类 (1)应用:(汽车、摩托车、纺织机械、工业缝纫机、电动工具、五金工具。电器.工程机械等)各种粉末冶金(铁铜基)零件。2 (2)分类:粉末冶金多孔材料、粉末冶金减摩材料、粉末冶金摩擦材料、粉末冶金结构零件、粉末冶金工模具材料、和粉末冶金电磁材料和粉末冶金高温材料等。粉末冶金

9、子工艺与性能粉末性能(property of powder) 粉末所有性能的总称。它包括:粉末的几何性能(粒度、比表面、孔径和形状等);粉末的化学性能(化学成分、纯度、氧含量和酸不溶物等);粉体的力学特性(松装密度、流动性、成形性、压缩性、堆积角和剪切角等);粉末的物理性能和表面特性(真密度、光泽、吸波性、表面活性、ze%26mdash;ta(%26ccedil;)电位和磁性等)。粉末性能往往在很大程度上决定了粉末冶金产品的性能。 几何性能最基本的是粉末的粒度和形状。 (1) 粒度。它影响粉末的加工成形、烧结时收缩和产品的最终性能。某些粉末冶金制品的性能几乎和粒度直接相关,例如,过滤材料的过滤

10、精度在经验上可由原始粉末颗粒的平均粒度除以10求得;硬质合金产品的性能与wc相的晶粒有很大关系,要得到较细晶粒度的硬质合金,惟有采用较细粒度的wc原料才有可能。生产实践中使用的粉末,其粒度范围从几百个纳米到几百个微米。粒度越小,活性越大,表面就越容易氧化和吸水。当小到几百个纳米时,粉末的储存和输运很不容易,而且当小到一定程度时量子效应开始起作用,其物理性能会发生巨大变化,如铁磁性粉会变成超顺磁性粉,熔点也随着粒度减小而降低。 (2)粉末的颗粒形状。它取决于制粉方法,如电解法制得的粉末,颗粒呈树枝状;还原法制得的铁粉颗粒呈海绵片状;气体雾化法制得的基本上是球状粉。此外,有些粉末呈卵状、盘状、针状

11、、洋葱头状等。粉末颗粒的形状会影响到粉末的流动性和松装密度,由于颗粒间机械啮合,不规则粉的压坯强度也大,特别是树枝状粉其压制坯强度最大。但对于多孔材料,采用球状粉最好。 (2) 力学特性粉末的力学性能即粉末的工艺性能,它是粉末冶金成形工艺中的重要工艺参数。粉末的松装密度是压制时用容积法称量的依据;粉末的流动性决定着粉末对压模的充填速度和压机的生产能力;粉末的压缩性决定压制过程的难易和施加压力的高低;而粉末的成形性则决定坯的强度。 (3) 化学性能主要取决于原材料的化学纯度及制粉方法。较高的氧含量会降低压制性能、压坯强度和烧结制品的力学性能,因此粉末冶金大部分技术条件中对此都有一定规定。例如,粉

12、末的允许氧含量为0.2%1.5%,这相当于氧化物含量为1%10%。七、 粉末冶金研究先进设备-放电等离子烧结系统(SPS) 随着高新技术产业的发展,新型材料特别是新型功能材料的种类和需求量不断增加,材料新的功能呼唤新的制备技术。 放电等离子烧结系统(SPS)3放电等离子烧结(Spark Plasma Sintering,简称SPS)是制备功能材料的一种全新技术,它具有升温速度快、烧结时间短、组织结构可控、节能环保等鲜明特点,可用来制备金属材料、陶瓷材料、复合材料,也可用来制备纳米块体材料、非晶块体材料、梯度材料等。 2 国内外SPS的发展与应用状况 SPS技术是在粉末颗粒间直接通入脉冲电流进行

13、加热烧结,因此在有的文献上也被称为等离子活化烧结或等离子辅助烧结(plasmaactivatedsintering-PAS或plasma-assistedsintering-PAS)1,2。早在1930年,美国科学家就提出了脉冲电流烧结原理,但是直到1965年,脉冲电流烧结技术才在美、日等国得到应用。日本获得了SPS技术的专利,但当时未能解决该技术存在的生产效率低等问题,因此SPS技术没有得到推广应用。 1988年日本研制出第一台工业型SPS装置,并在新材料研究领域内推广使用。1990年以后,日本推出了可用于工业生产的SPS第三代产品,具有10100t 的烧结压力和脉冲电流50008000A。

14、最近又研制出压力达500t,脉冲电流为25000A的大型SPS装置。由于SPS技术具有快速、低温、高效率等优点,近几年国外许多大学和科研机构都相继配备了SPS烧结系统,并利用SPS进行新材料的研究和开发3。1998年瑞典购进SPS烧结系统,对碳化物、氧化物、生物陶瓷等材料进行了较多的研究工作4。 国内近三年也开展了用SPS技术制备新材料的研究工作1,3,引进了数台SPS烧结系统,主要用来烧结纳米材料和陶瓷材料58。SPS作为一种材料制备的全新技术,已引起了国内外的广泛重视。3 SPS的烧结原理 3.1等离子体和等离子加工技术9,10 SPS是利用放电等离子体进行烧结的。等离子体是物质在高温或特

15、定激励下的一种物质状态,是除固态、液态和气态以外,物质的第四种状态。等离子体是电离气体,由大量正负带电粒子和中性粒子组成,并表现出集体性为的一种准中性气体。 等离子体是解离的高温导电气体,可提供反应活性高的状态。等离子体温度400010999,其气态分子和原子处在高度活化状态,而且等离子气体内离子化程度很高,这些性质使得等离子体成为一种非常重要的材料制备和加工技术。 等离子体加工技术已得到较多的应用,例如等离子体CVD、低温等离子体PBD以及等离子体和离子束刻蚀等。目前等离子体多用于氧化物涂层、等离子刻蚀方面,在制备高纯碳化物和氮化物粉体上也有一定应用。而等离子体的另一个很有潜力的应用领域是在

16、陶瓷材料的烧结方面1。 产成等离子体的方法包括加热、放电和光激励等。放电产生的等离子体包括直流放电、射频放电和微波放电等离子体。SPS利用的是直流放电等离子体。3.2SPS装置和烧结基本原理 SPS装置主要包括以下几个部分:轴向压力装置;水冷冲头电极;真空腔体;气氛控制系统(真空、氩气);直流脉冲及冷却水、位移测量、温度测量、和安全等控制单元。SPS的基本结构如图1所示。 SPS与热压(HP)有相似之处,但加热方式完全不同,它是一种利用通-断直流脉冲电流直接通电烧结的加压烧结法。通-断式直流脉冲电流的主要作用是产生放电等离子体、放电冲击压力、焦耳热和电场扩散作用11。SPS烧结时脉冲电流通过粉

17、末颗粒如图2所示。在SPS烧结过程中,电极通入直流脉冲电流时瞬间产生的放电等离子体,使烧结体内部各个颗粒均匀的自身产生焦耳热并使颗粒表面活化。与自身加热反应合成法(SHS)和微波烧结法类似,SPS是有效利用粉末内部的自身发热作用而进行烧结的。SPS烧结过程可以看作是颗粒放电、导电加热和加压综合作用的结果。除加热和加压这两个促进烧结的因素外,在SPS技术中,颗粒间的有效放电可产生局部高温,可以使表面局部熔化、表面物质剥落;高温等离子的溅射和放电冲击清除了粉末颗粒表面杂质(如去处表面氧化物等)和吸附的气体。电场的作用是加快扩散过程1,9,12。5 SPS在材料制备中的应用 目前在国外,尤其是日本开

18、展了较多用SPS制备新材料的研究,部分产品已投入生产。SPS可加工的材料种类如表1所示。除了制备材料外,SPS还可进行材料连接,如连接MoSi2与石磨14,ZrO2/Cermet/Ni等15。 近几年,国内外用SPS制备新材料的研究主要集中在:陶瓷、金属陶瓷、金属间化合物,复合材料和功能材料等方面。其中研究最多的是功能材料,他包括热电材料16 、磁性材料17 、功能梯度材料18 、复合功能材料19和纳米功能材料20等。对SPS制备非晶合金、形状记忆合金21 、金刚石等也作了尝试,取得了较好的结果。5 .1功能梯度材料 功能梯度材料(FGM)的成分是梯度变化的,各层的烧结温度不同,利用传统的烧结

19、方法难以一次烧成。利用CVD、PVD等方法制备梯度材料,成本很高,也很难实现工业化。采用阶梯状的石磨模具,由于模具上、下两端的电流密度不同,因此可以产生温度梯度。利用SPS在石磨模具中产生的梯度温度场,只需要几分钟就可以烧结好成分配比不同的梯度材料。目前SPS成功制备的梯度材料有:不锈钢/ZrO2;Ni/ZrO2;Al/高聚物;Al/植物纤维;PSZ/T等梯度材料。 在自蔓延燃烧合成(SHS)中,电场具有较大激活效应和作用,特别是场激活效应可以使以前不能合成的材料也能成功合成,扩大了成分范围,并能控制相的成分,不过得到的是多孔材料,还需要进一步加工提高致密度。利用类似于SHS电场激活作用的SP

20、S技术,对陶瓷、复合材料和梯度材料的合成和致密化同时进行,可得到65nm的纳米晶,比SHS少了一道致密化工序22。利用SPS可制备大尺寸的FGM,目前SPS制备的尺寸较大的FGM体系是ZrO2(3Y)/不锈钢圆盘,尺寸已达到100mm17mm23。 用普通烧结和热压WC粉末时必须加入添加剂,而SPS使烧结纯WC成为可能。用SPS制备的WC/Mo梯度材料的维氏硬度(HV)和断裂韧度分别达到了24Gpa和6Mpam1/2,大大减轻由于WC和Mo的热膨胀不匹配而导致热应力引起的开裂24。5 .2 热电材料 由于热点转换的高可靠性、无污染等特点,最近热电转换器引起了人们的极大兴趣,并研究了许多热电转换

21、材料。经文献检索发现,在SPS制备功能材料的研究中,对热电材料的研究较多。 (1) 热电材料的成分梯度化氏目前提高热点效率的有效途径之一。例如,成分梯度的FeSi2就是一种比较有前途的热电材料,可用于200900之间进行热电转换。FeSi2没有毒性,在空气中有很好的抗氧化性,并且有较高的电导率和热电功率。热点材料的品质因数越高(Z=2/k,其中Z是品质因数,为Seebeck系数,k为热导系数,为材料的电阻率),其热电转换效率也越高。试验表明,采用SPS制备的成分梯度的FeSix(Si含量可变),比FeSi2的热电性能大为提高25。这方面的例子还有Cu/Al2O3/Cu26,MgFeSi227,

22、 Zn4Sb328,钨硅化物29等。 (2)用于热电制冷的传统半导体材料不仅强度和耐久性差,而且主要采用单相生长法制备,生产周期长、成本高。近年来有些厂家为了解决这个问题,采用烧结法生产半导体致冷材料,虽改善了机械强度和提高了材料使用率,但是热电性能远远达不到单晶半导体的性能,现在采用SPS生产半导体致冷材料,在几分钟内就可制备出完整的半导体材料,而晶体生长却要十几个小时。SPS制备半导体热电材料的优点是,可直接加工成圆片,不需要单向生长法那样的切割加工,节约了材料,提高了生产效率。 (3)热压和冷压-烧结的半导体性能低于晶体生长法制备的性能。现用于热电致冷的半导体材料的主要成分是Bi,Sb,

23、Te和Se,目前最高的Z值为3.010/K,而用SPS制备的热电半导体的Z值已达到2.93.010/K,几乎等于单晶半导体的性能30。表2是SPS和其他方法生产BiTe材料的比较。5 .3 铁电材料 用SPS烧结铁电陶瓷PbTiO3时,在9001000下烧结13min,烧结后平均颗粒尺寸1m,相对密度超过98%。由于陶瓷中孔洞较少31,因此在101106HZ之间介电常数基本不随频率而变化。 用SPS制备铁电材料Bi4Ti3O12陶瓷时,在烧结体晶粒伸长和粗化的同时,陶瓷迅速致密化。用SPS容易得到晶粒取向度好的试样,可观察到晶粒择优取向的Bi4Ti3O12陶瓷的电性能有强烈的各向异性32。 用

24、SPS制备铁电Li置换IIVI半导体ZnO陶瓷,使铁电相变温度Tc提高到470K,而以前冷压烧结陶瓷只有330K34。 5 .4 磁性材料 用SPS烧结Nd Fe B磁性合金,若在较高温度下烧结,可以得到高的致密度,但烧结温度过高会导致出现温度过高会导致出现相和晶粒长大,磁性能恶化。若在较低温度下烧结,虽能保持良好的磁性能,但粉末却不能完全压实,因此要详细研究密度与性能的关系35 。 SPS在烧结磁性材料时具有烧结温度低、保温时间短的工艺优点。Nd Fe Co V B 在650下保温5min,即可烧结成接近完全密实的块状磁体,没有发现晶粒长大36。用SPS制备的865Fe6Si4Al35Ni和

25、MgFe2O4的复合材料(850,130MPa),具有高的饱和磁化强度Bs=12T和高的电阻率=110m37。 以前用快速凝固法制备的软磁合金薄带,虽已达到几十纳米的细小晶粒组织,但是不能制备成合金块体,应用受到限制。而现在采用SPS制备的块体磁性合金的磁性能已达到非晶和纳米晶组织带材的软磁性能3。5 .5 纳米材料 致密纳米材料的制备越来越受到重视。利用传统的热压烧结和热等静压烧结等方法来制备纳米材料时,很难保证能同时达到纳米尺寸的晶粒和完全致密的要求。利用SPS技术,由于加热速度快,烧结时间短,可显著抑制晶粒粗化。例如:用平均粒度为5m的TiN粉经SPS烧结(1963K,196382MPa

26、,烧结5min),可得到平均晶粒65nm的TiN密实体3。文献3中引用有关实例说明了SPS烧结中晶粒长大受到最大限度的抑制,所制得烧结体无疏松和明显的晶粒长大。 在SPS烧结时,虽然所加压力较小,但是除了压力的作用会导致活化能力Q降低外,由于存在放电的作用,也会使晶粒得到活化而使Q值进一步减小,从而会促进晶粒长大,因此从这方面来说,用SPS烧结制备纳米材料有一定的困难。 但是实际上已有成功制备平均粒度为65nm的TiN密实体的实例。在文献38中,非晶粉末用SPS烧结制备出2030nm的Fe90Zr7B3纳米磁性材料。另外,还已发现晶粒随SPS烧结温度变化比较缓慢7,因此SPS制备纳米材料的机理

27、和对晶粒长大的影响还需要做进一步的研究。5. 6 非晶合金的制备 在非晶合金的制备中,要选择合金成分以保证合金具有极低的非晶形成临界冷却速度,从而获得极高的非晶形成能力。在制备工艺方面主要有金属浇铸法和水淬法,其关键是快速冷却和控制非均匀形核。由于制备非晶合金粉末的技术相对成熟,因此多年来,采用非晶粉末在低于其晶化温度下进行温挤压、温轧、冲击(爆炸)固化和等静压烧结等方法来制备大块非晶合金,但存在不少技术难题,如非晶粉末的硬度总高于静态粉末,因而压制性能欠佳,其综合性能与旋淬法制备的非晶薄带相近,难以作为高强度结构材料使用39。可见用普通粉末冶金法制备大块非晶材料存在不少技术难题。SPS作为新

28、一代烧结技术有望在这方面取得进展,文献40中利用SPS烧结由机械合金化制取的非晶Al基粉末得到了块状圆片试样(10mm2mm),磁非晶合金是在375MPa下503K时保温20min制备的,含有非晶相和结晶相以及残余的Sn相。其非晶相的结晶温度是533K。文献41中用脉冲电流在423K和500MPa下制备了Mg80Ni10Y5B5块状非晶合金,经分析其中主要是非晶相。非晶Mg合金比A291D合金和纯镁有较高的腐蚀电位和较低的腐蚀电流密度,非晶化改善了镁合金的抗腐蚀抗力。从实践来看,可以采用SPS烧结法制备块状非晶合金。因此利用先进的SPS技术进行大块非晶合金的制备研究很有必要。6总结与展望 放电

29、等离子烧结(SPS)是一种低温、短时的快速烧结法,可用来制备金属、陶瓷、纳米材料、非晶材料、复合材料、梯度材料等。SPS的推广应用将在新材料的研究和生产领域中发挥重要作用。 SPS的基础理论目前尚不完全清楚,需要进行大量实践与理论研究来完善,SPS需要增加设备的多功能性和脉冲电流的容量,以便做尺寸更大的产品;特别需要发展全自动化的SPS生产系统,以满足复杂形状、高性能的产品和三维梯度功能材料的生产需要42。 对实际生产来说,需要发展适合SPS技术的粉末材料,也需要研制比目前使用的模具材料(石墨)强度更高、重复使用率更好的新型模具材料,以提高模具的承载能力和降低模具费用。 在工艺方面,需要建立模

30、具温度和工件实际温度的温差关系,以便更好的控制产品质量。在SPS产品的性能测试方面,需要建立与之相适应的标准和方法。等静压成型粉末冶金粉末冶金零件成型大致有两种:压制成型和注射成型。 压制成型种类很多,在实际工业应用当中,压制成型应用较广泛。温压、冷封闭钢模压制、冷等静压、热等静压都属于压制成型。压制成型,用干粉依靠重力填充于模中,通过外界压力挤压成型。 等静压成型是制备材料的一种成型模式,等静压成型是利用液体均匀地向各个方向传递压力的特性,实现制品均匀受压,制品的密度均匀。金属喷射成型粉末冶金金属粉末注射成型(Metal Powder Injection Molding,简称MIM)技术是将

31、现代塑料注射成型技术引入粉末冶金领域而形成的一门新型粉末冶金近净成形技术。其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(150)用注射成型机注入模腔内固化成型,然后用化学或热分解的方法将成型坯中的粘结剂脱除,最后经烧结致密化得到最终产品。与传统工艺相比,MIM具有精度高、组织均匀、性能优异、生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。 MIM技术

32、由美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并使其得到迅速推广,特别是在八十年代中期该技术实现产业化以来,更获得了突飞猛进的发展,产量每年都以惊人速度递增。到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工艺的推广应用,这些公司包括太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工-爱普生、大同特殊钢等。目前日本有四十多家专业从事MIM产业的公司,其MIM产品的销售总值早已超过欧洲并直追美国。MIM技术已

33、成为新型制造业中最为活跃的前沿技术领域,是世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向。 金属粉末注射成型技术是塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科渗透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速、准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品材质不均匀、机械性能低、薄壁成型困难、结构复杂等缺点,特别适合于大批量生产小型、复杂以及具有特殊

34、要求的金属零件。 1. MIM的工艺流程为:金属粉末粘结剂混炼注射成型脱脂烧结后处理。 (1)金属粉末 MIM工艺所用的金属粉末颗粒尺寸一般在0.520m。从理论上讲,颗粒越细,比表面积也越大,越易于成型和烧结。而传统的粉末冶金工艺则采用大于40m的较粗粉末。 (2) 有机粘结剂 有机粘结剂的作用是粘结金属粉末颗粒,使混合料在注射机料筒中加热后具有流变性和润滑性,即粘结剂是带动粉末流动的载体。因此,粘结剂的选择是整个粉末注射成型的关键。对有机粘结剂的要求为:用量少,用较少的粘结剂能使混合料产生较好的流变性;不反应,在去除粘结剂的过程中与金属粉末不起任何化学反应;易去除,在制品内不残留碳。 (3

35、) 混料 把金属粉末与有机粘结剂均匀掺混在一起,使各种原料成为注射成型用混合料。混合料的均匀程度直接影响其流动性,从而影响注射成型工艺参数以及最终材料的密度及其它性能。 (4) 注射成型 本步工艺过程与塑料注射成型工艺过程在原理上是一致的,其设备条件也基本相同。在注射成型过程中,混合料在注射机料筒内被加热成具有流变性的塑性物料,并在适当的注射压力下注入模具中,成型出毛坯。注射成型毛坯在外观上应均匀一致,从而使制品在烧结过程中均匀收缩。 (5) 萃取成型毛坯 在烧结前必须去除毛坯内所含有的有机粘结剂,该过程称为萃取。萃取工艺必须保证粘结剂从毛坯的不同部位沿着颗料之间的微小通道逐渐排出,而不降低毛

36、坯的强度。粘结剂的排除速率一般遵循扩散方程。 (6) 烧结 烧结能使多孔的脱脂毛坯收缩密化成为具有一定组织和性能的制品。尽管制品的性能与烧结前的许多工艺因素有关,但在许多情况下,烧结工艺对最终制品的金相组织和性能有着很大甚至决定性的影响。 (7) 后处理 对于尺寸要求较为精密的零件,需要进行必要的后处理。这工序与常规金属制品的热处理工序相同。 2. MIM的工艺特点及与其它加工工艺的比较: MIM使用的原料粉末粒径在215m,而传统粉末冶金的原料粉末粒径大多在50100m;MIM工艺的成品密度较高,相对密度达95%98%,而传统粉末冶金工艺相对密度仅为80%85%(主要原因是MIM工艺使用微细

37、粉末);MIM的产品重量通常小于400克,传统粉末冶金的产品重量为十到数百克;MIM的产品形状可以是三维复杂形状,传统粉末冶金的产品形状通常为二维简单形状。MIM工艺具有传统粉末冶金工艺的优点,而其形状自由度高是传统粉末冶金工艺所不能达到的。传统粉末冶金工艺受到模具强度和填充密度的影响,成型形状大多为二维圆柱型。 传统的精密铸造脱燥工艺为一种制作复杂形状产品的有效技术,近年来使用陶芯辅助,可以完成狭缝、深孔的制造,但受到陶芯强度以及铸液流动性的限制,该工艺仍存在某些技术难题。一般而言,该工艺制造大、中型零件较为合适,制造复杂形状的小型零件则以MIM工艺较为合适。 压铸工艺用于铝和锌合金等熔点低

38、、铸液流动性良好的材料,该工艺的产品因材料的限制,其强度、耐磨性、耐蚀性均有一定限度。MIM工艺可以加工的原材料则较多。 精密铸造工艺虽然近年来其产品的精度和复杂度均有所提高,但仍比不上脱蜡工艺和MIM工艺。粉末锻造是一项重要的发展,已适用于连杆的量产制造。但是一般而言,锻造工程中热处理的成本和模具的寿命还是有问题,仍待进一步解决。 传统机械加工工艺靠自动化而提升其加工能力,在效果和精度上有极大的进步,但在基本程序上仍脱不开以逐步加工(车、刨、铣、磨、钻孔、抛光等)来完成零件形状的加工。机械加工方法的加工精度远优于其他加工方法,但是因为材料的有效利用率低,且其形状的完成受限于设备与刀具,有些零

39、件无法用机械加工完成。相反,MIM可以有效利用材料,不受限制,对于小型、高难度形状的精密零件的制造,MIM工艺比较机械加工而言,其成本较低且效率高,具有很强的竞争力。 MIM技术并非与传统加工方法竞争,而是弥补传统加工方法在技术上的不足或无法制作的缺陷。MIM技术可以在传统加工方法制作的零件领域上发挥其特长。 3. MIM工艺在零部件制造方面的技术优势 (1)可成型高度复杂结构的结构零件 注射成型工艺技术利用注射机注射成型产品毛坯,保证物料充分充满模具型腔,也就保证了零件高复杂结构的实现。以往在传统加工技术中先作成个别元件再组合成组件的方式,在使用MIM技术时可以考虑整合成完整的单一零件,大大

40、减少步骤,简化加工程序。MIM与其他金属加工方法比较,制品尺寸精度高,不必进行二次加工或只需少量精加工。注射成型工艺可直接成型薄壁、复杂结构件,制品形状已接近最终产品要求,零件尺寸公差一般保持在0.10.3左右,特别对于降低难于进行机械加工的硬质合金的加工成本,减少贵重金属的加工损失尤其具有重要意义。 (2) 制品微观组织均匀、密度高、性能好 在压制加工过程中,由于模壁与粉末以及粉末与粉末之间的摩擦力,使得压制压力分布不均匀,也就导致了压制毛坯在微观组织上不均匀,这样就会造成压制粉末冶金件在烧结过程中收缩不均匀,因此不得不降低烧结温度以减少这种效应,从而使制品孔隙度大、材料致密性差、密度低,严

41、重影响制品的机械性能。反之,注射成型工艺是一种流体成型工艺,粘接剂的存在保障了粉末的均匀排布,从而可消除毛坯微观组织上的不均匀,进而使烧结制品密度可达到其材料的理论密度。一般情况下,压制产品的密度最高只能达到理论密度的85%。制品的高致密性可使强度增加,韧性加强,延展性、导电导热性得到改善,磁性能提高。 (3) 效率高,易于实现大批量和规模化生产 MIM技术使用的金属模具,其寿命和工程塑料注射成型具模具相当。由于使用金属模具,MIM适合于零件的大批量生产。由于利用注射机成型产品毛坯,极大地提高了生产效率,降低了生产成本,而且注射成型产品的一致性、重复性好,从而为大批量和规模化工业生产提供了保证

42、。 (4) 适用材料范围宽,应用领域广阔(铁基,低合金,高速钢,不锈钢,克阀合金,硬质合金) 可用于注射成型的材料非常广泛,原则上任何可高温浇结的粉末材料均可由MIM工艺制造成零件,包括传统制造工艺中的难加工材料和高熔点材料。此外,MIM也可以根据用户要求进行材料配方研究,制造任意组合的合金材料,将复合材料成型为零件。注射成型制品的应用领域已遍及国民经济各领域,具有广阔的市场前景。 (5) MIM工艺采用微米级细粉末,既能加速烧结收缩,有助于提高材料的力学性能,延长材料的疲劳寿命,又能改善耐、抗应力腐蚀及磁性能。 4.MIM技术的应用领域 (1)计算机及其辅助设施:如打印机零件、磁芯、撞针轴销

43、、驱动零件等; (2)工具:如钻头、刀头、喷嘴、枪钻、螺旋铣刀、冲头、套筒、扳手、电工工具,手工具等; (3)家用器具:如表壳、表链、电动牙刷、剪刀、风扇、高尔夫球头、珠宝链环、圆珠笔卡箍、刃具刀头等零部件; (4)医疗机械用零件:如牙矫形架、剪刀、镊子等; (5)军用零件:导弹尾翼、枪支零件、弹头、药型罩、引信用零件等; (6)电器用零件:电子封装,微型马达、电子零件、传感器件等; (7)机械用零件:如松棉机、纺织机、卷边机、办公机械等; (8)汽车船舶用零件:如离合器内环、拔叉套、分配器套、汽门导管、同步毂、安全气囊件等。粉末锻造粉末冶金(Powder Forged) 粉末锻造通常是指将粉

44、末烧结的预成形坯经加热后,在闭式模中锻造成零件的成形工艺方法。它是将传统粉末冶金和精密锻造结合起来的一种新工艺,并兼两者的优点。可以制取密度接近材料理论密度的粉末锻件,克服了普通粉末冶金零件密度低的缺点。使粉末锻件的某些物理和力学性能达到甚至超过普通锻件的水平,同时,又保持了普通粉末冶金少屑、无屑工艺的优点。 通过合理设计预成形坯和实行少、无飞边锻造,具有成形精确,材料利用率高,锻造能量消耗少等特点。 粉末锻造的目的是把粉末预成形坯锻造成致密的零件。目前,常用的粉末锻造方法有粉末冷锻、锻造烧结、烧结锻造、和粉末锻造几种,四种基本工艺过程。粉末锻造在许多领域中得到了应用。特别是在汽车制造业中的应

45、用更为突出。压力烧结粉末冶金(Press Sinter) 在高温下,陶瓷生坯固体颗粒的相互键联,晶粒长大,空隙(气孔)和晶界渐趋减少,通过物质的传递,其总体积收缩,密度增加,最后成为具有某种显微结构的致密多晶烧结体,这种现象称为烧结。烧结的术语: 1、 烧结 sintering 粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的冶金结合以提高其强度。 2、 填料 packing material 在预烧或烧结过程中为了起分隔和保护作用而将压坯埋入其中的一种材料。 3、 预烧 presintering 在低于最终烧结温度的温度下对压坯的加热处理。 4、 加压烧结 pressure

46、 在烧结同时施加单轴向压力的烧结工艺。 5、 松装烧结 loose-powder sintering,gravity sintering 粉末未经压制直接进行的烧结。 6、 液相烧结 liquid-phase sintering 至少具有两种组分的粉末或压坯在形成一种液相的状态下烧结。 7、 过烧 oversintering 烧结温度过高和(或)烧结时间过长致使产品最终性能恶化的烧结。 8、 欠烧 undersintering 烧结温度过低和(或)烧结时间过短致使产品未达到所需性能的烧结。 9、 熔渗 infiltration 用熔点比制品熔点低的金属或合金在熔融状态下充填未烧结的或烧结的制品

47、内的孔隙的工艺方法。 10、 脱蜡 dewaxing,burn-off 用加热排出压坯中的有机添加剂(粘结剂或润滑剂)。 11、 网带炉 mesh belt furnace 一般由马弗保护的网带将零件实现炉内连续输送的烧结炉。 12、 步进梁式炉 walking-beam furnace 通过步进梁系统将放置于烧结盘中的零件在炉内进行传送的烧结炉。 13、 推杆式炉 pusher furnace 将零件装入烧舟中,通过推进系统将零件在炉内进行传送的烧结炉。 14、 烧结颈形成 neck formation 烧结时在颗粒间形成颈状的联结。 15、 起泡 blistering 由于气体剧烈排出,在烧结件表面形成鼓泡的现象。 16、 发汗 sweating 压坯加热处理时液相渗出的现象。 17、 烧结壳 sinter skin 烧结时,烧结件上形成的一种表面层,其性能不同于产品内部。 18、 相对密度 relative density 多孔体的密度与无孔状态下同一成分材料的

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号