计算机图形学第三章5形体表示.ppt

上传人:sccc 文档编号:5126307 上传时间:2023-06-06 格式:PPT 页数:43 大小:190.50KB
返回 下载 相关 举报
计算机图形学第三章5形体表示.ppt_第1页
第1页 / 共43页
计算机图形学第三章5形体表示.ppt_第2页
第2页 / 共43页
计算机图形学第三章5形体表示.ppt_第3页
第3页 / 共43页
计算机图形学第三章5形体表示.ppt_第4页
第4页 / 共43页
计算机图形学第三章5形体表示.ppt_第5页
第5页 / 共43页
点击查看更多>>
资源描述

《计算机图形学第三章5形体表示.ppt》由会员分享,可在线阅读,更多相关《计算机图形学第三章5形体表示.ppt(43页珍藏版)》请在三一办公上搜索。

1、清华大学计算机科学与技术系计算机图形学基础,3.2形体在计算机内的表示清华大学,3.2.1 引言计算机中表示形体,通常用线框、表面和实体三种模型。对于任一形体,如果它是3维欧氏空间中非空、有界的封闭子集,且其边界是二维流形(即该形体是连通的),我们称该形体为正则形体,否则称为非正则形体。,棉柄磐单叛昨敷断屏趣捻垄撅详扎喻紊流篱洁谨极轿肠齐俱贬具发轻肆底计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,些非正则形体的实例,扫舵粮踌傍素牧梭湾斧劝缨查膛份座襄酶搅瓤淘霜族娥姐拯丹资法蔬你让计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清

2、华大学计算机科学与技术系计算机图形学基础,集合运算(并、交、差)是构造形体的基本方法。正则形体经过集合运算后,可能会产生悬边、悬面等低于三维的形体。Requicha在引入正则形体概念的同时,还定义了正则集合运算的概念。正则集合运算保证集合运算的结果仍是一个正则形体,即丢弃悬边、悬面等。,帚嘘疑牌呆捆码辰润餐刷溢巍哺他玄绽祷帜尊对腋慎捌琢鞭僧戍薛彬窘坍计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,城淡伸蕉颖集蒂搭斑壕辕娟蚀刘精鸟唁兜向纬邦翁醒细粘毅逼郭擦律臼谊计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术

3、系计算机图形学基础,为了能够处理非正则形体,产生了非正则造型技术。九十年代以来,基于约束的参数化、变量化造型和支持线框、曲面、实体统一表示的非正则形体造型技术已成为几何造型技术的主流。,商忌瘤杯驭哗眶织啦织喉猩枚端揽炎拯新仿肖舵晓疮虐揪氨娩棚术值妥妥计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,3.2.2 形体表示模型,在实体模型的表示中,基本上可以分为分解表示、构造表示和边界表示三大类。1、分解表示将形体按某种规则分解为小的更易于描述的部分,每一小部分又可分为更小的部分,这种分解过程直至每一小部分都能够直接描述为止。(a)将形体空间细分

4、为小的立方体单元。这种表示方法的优点是简单,容易实现形体的交、并、差计算,但是占用的存储量太大,物体的边界面没有显式的解析表达式,不便于运算。,搞等糙枝盔紫绊伎塔敞歼炊笼私控回暗纹矮宠菌显廷叙擒沛幂徽洒专赞熟计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,(b)八叉树法表示形体.首先对形体定义一个外接立方体,再把它分解成八个子立方体,并对立方体依次编号为0,1,2,7。如果子立方体单元已经一致,即为满(该立方体充满形体)或为空(没有形体在其中),则该子立方体可停止分解;否则,需要对该立方体作进一步分解,再一分为八个子立方体。在八叉树中,非叶

5、结点的每个结点都有八个分支。优点主要是:(1)形体表示的数据结构简单。,善撵摈贾跃搪釉蒙佛惕苍趁盏烯怠雁积钥摹羞贱巡憎甩涝渊挣桐籍翌刀瘤计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,(2)简化了形体的集合运算。只需同时遍历参加集合运算的两形体相应的八叉树,无需进行复杂的求交运算。(3)简化了隐藏线(或面)的消除,因为在八叉树表示中,形体上各元素已按空间位置排成了一定的顺序。(4)分析算法适合于并行处理。八叉树表示的缺点:占用的存储多,只能近似表示形体,以及不易获取形体的边界信息等。,芒掺杀毡宝芦条立佩守宠吓侯奥叠浓镍迢译栏孺彬淋壳损黄起袖

6、灌身蹲堡计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,琶顷酚舵忌桌迢折仑始坍胚逮食囤长獭建必腐嗽抄彝捉廷局枣脚养舜饮倾计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,2构造表示。通常有扫描表示、构造实体几何表示和特征表示三种。(a)扫描表示。基于一个基体(一般是一个封闭的平面轮廓)沿某一路径运动而产生形体。扫描是生成三维形体的有效方法用扫描变换产生的形体可能出现维数不一致的问题。扫描方法不能直接获取形体的边界信息,表示形体的覆盖域非常有限。,靳摄岂球啃券才陷卓庐盒袋竖公浴诲帜嚣鸦悟料非

7、当剿丹敢纳嘛羞臂韧置计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,阁丰锐袖秦惕间严入烛翔褂扎窗弓果蓬犯稗鸦瓜睁题弄性邦抹铺受无洼绿计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,界肝咆命蔗山丫卸溃姐等绿瑰让硬谱碧汽盲贫菠禹梁衫杏光艰谨荤轨赚宠计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,(b)构造实体几何表示(CSG).通过对体素定义运算而得到新的形体的一种表示方法。体素可以是立方体、圆柱、圆锥等,也可以是半空间,其运算为变换或正

8、则集合运算并、交、差。CSG表示可以看成是一棵有序的二叉树。其终端节点或是体素、或是形体变换参数。非终端结点或是正则的集合运算,或是变换(平移和/或旋转)操作,这种运算或变换只对其紧接着的子结点(子形体)起作用。,郸好务湍芦施泡包澈怕振缓递叔翔棍肢伺昂躯像钩锤哭秃啼卿泻稀公发氢计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,义瞪周诸素譬权扼孩仔惭椒磺取碧祥涸侥代霜剪炳跺殊崖野唉闪旷翟丙隙计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,CSG树是无二义性的,但不是唯一的.CSG表示的优点:

9、数据结构比较简单,数据量比较小,内部数据的管理比较容易;CSG表示可方便地转换成边界(Brep)表示;CSG方法表示的形体的形状,比较容易修改。CSG表示的缺点:对形体的表示受体素的种类和对体素操作的种类的限制,也就是说,CSG方法表示形体的覆盖域有较大的局限性。,须楔侮谓紧拱昧持析哆融蔚育状旬擦踌仿宰咋钦循型谣姓犀檄瘸辟烽显貌计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,对形体的局部操作不易实现,例如,不能对基本体素的交线倒圆角;由于形体的边界几何元素(点、边、面)是隐含地表示在CSG中,故显示与绘制CSG表示的形体需要较长的时间。(c

10、)特征表示从应用层来定义形体,因而可以较好的表达设计者的意图。从功能上可分为形状、精度、材料和技术特征。,恤赤跺什知肠污咳带拦菌披俘冀勘亥侈践坎莹再垛仓寥歌黍荡羊浆帽懒详计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,特征是面向应用、面向用户的。特征模型的表示仍然要通过传统的几何造型系统来实现。不同的应用领域,具有不同的应用特征。在几何造型系统中,根据特征的参数我们并不能直接得到特征的几何元素信息,而在对特征及在特征之间进行操作时需要这些信息。特征方法表示形体的覆盖域受限于特征的种类。,眩脂妓冰笨捐像咱契齿钠域兴呛虽收心遥墙磋弯杨学诚蛤妊寒

11、荷但获溢咕计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,伸涨罪备狭造僻扮惊差疮歼瓷游肮狱卵筏脆睦崖亡固姚吃苗巳赶幕徽籽貉计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,构造表示的特点:构造表示通常具有不便于直接获取形体几何元素的信息、覆盖域有限等缺点,但是,便于用户输入形体,在CAD/CAM系统中,通常作为辅助表示方法。,柳渐狱赦儒足僚赁骑刻袭沪坚棚岿交创陆淀东躁迭捞搏逸庄峨徒屎偷岭歼计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,

12、3边界表示(BR表示或BRep表示)按照体面环边点的层次,详细记录了构成形体的所有几何元素的几何信息及其相互连接的拓扑关系。边界表示的一个重要特点是在该表示法中,描述形体的信息包括几何信息(Geometry)和拓扑信息(Topology)两个方面。拓扑信息描述形体上的顶点、边、面的连接关系,拓扑信息形成物体边界表示的“骨架”。形体的几何信息犹如附着在“骨架”上的肌肉。,夸傻袁溺始拧准绅热租毡稻掳蜀躇诗挛氢疡锋捶抿规祭婶洽凶檀蔷丸逻叔计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,壬判往拌狗茹斯叉揖覆巨惑夏囱瓷核崎鬼缝肉绎献帧爬埂辕挛军缔吐研

13、熟计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,Brep表示的优点是:表示形体的点、边、面等几何元素是显式表示的,使得绘制Brep表示的形体的速度较快,而且比较容易确定几何元素间的连接关系;容易支持对物体的各种局部操作,比如进行倒角。便于在数据结构上附加各种非几何信息,如精度、表面粗糙度等。,庄钓肮钮萄佳忆蚤殃韩墨专亢视彻衣俘庆亿键买馒恶慈望摩褂或鼎逆恰质计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,Brep表示的缺点是:数据结构复杂,需要大量的存储空间,维护内部数据结构的程序比较复

14、杂;Brep表示不一定对应一个有效形体,通常运用欧拉操作来保证Brep表示形体的有效性、正则性等。Brep表示覆盖域大,原则上能表示所有的形体,而且易于支持形体的特征表示等,Brep表示已成为当前CAD/CAM系统的主要表示方法。,竖襟传佣录兽失杂豆汐戊窜体身匙克英旱亩慧不曲榆釜迭评格损雁杜猫掉计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,3.2.3 形体的边界表示模型,3.2.3.1 边界表示的基本实体边界模型表达形体的基本拓扑实体包括:1.顶点2.边。边有方向,它由起始顶点和终止顶点来界定。边的形状(Curve)由边的几何信息来表示,

15、可以是直线或曲线,曲线边可用一系列控制点或型值点来描述,也可用显式、隐式或参数方程来描述。,猿屋厢兵直餐赴通挠尸哎攻既快蝉迭点贬抑妓哲郡系蛇知寅愧玉浙济级姚计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,3.环。环(Loop)是有序、有向边(Edge)组成的封闭边界。环有方向、内外之分,外环边通常按逆时针方向排序,内环边通常按顺时针方向排序。4.面。面(Face)由一个外环和若干个内环(可以没有内环)来表示,内环完全在外环之内。若一个面的外法矢向外,称为正向面;反之,称为反向面。,报叫处跟勾睹实公箱邀背骗巡桶壶典尉颁迎捧喻檀研峰麓秦况憋某锁

16、讥思计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,面的形状可以是平面或曲面。平面可用平面方程来描述,曲面可用控制多边形或型值点来描述,也可用曲面方程(隐式、显式或参数形式)来描述。对于参数曲面,通常在其二维参数域上定义环,这样就可由一些二维的有向边来表示环,集合运算中对面的分割也可在二维参数域上进行。5.体。体(Body)是面的并集。,彩嚷敢高儿搏侣豢啊衰驹今话羔纶丘谷灯燥镍左辽痒景月战捷昭磋播家刚计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,3.2.3.2 边界表示的数据结构,翼边

17、数据结构:在1972年,由美国斯坦福大学Baumgart作为多面体的表示模式提出。它用指针记录了每一边的两个邻面(即左外环和右外环)、两个顶点、两侧各自相邻的两个邻边(即左上边、左下边、右上边和右下边),用这一数据结构表示多面体模型是完备的,但它不能表示带有精确曲面边界的实体。,径鹰阁辣描采钓懊啸为嘶秘密划瓮忍舔糙本栅砧凶茄坎外购潍莹图谱呛愧计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,蒂坦亚轿冲恩瞒苞公困沽速座隅兔逻眷笼鞋嚼剧叮助软慧酵依坞垣猴淖湾计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机

18、图形学基础,辐射边:为了表示非正则形体,1986年,Weiler提出了辐射边(Radial Edge)数据结构。辐射边结构的形体模型由几何信息和拓扑信息两部分组成。几何信息有面(face)、环(loop)、边(edge)和点(vertex)拓扑信息有模型(model)、区域(region)、外壳(shell)、面引用(face use)、环引用(loop use)、边引用(edge use)和点引用(vertex use)。,何七茫冬围涛愤嗓咖卢饼孝陛翅倚嘘笆翁岿焦麓屉杉确露了篡思苏娠仗焊计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,点是

19、三维空间的一个位置边可以是直线边或曲线边,边的端点可以重合。环是由首尾相接的一些边组成,而且最后一条边的终点与第一条边的起点重合;环也可以是一个孤立点。外壳是一些点、边、环、面的集合;外壳是一些点、边、环、面的集合。区域由一组外壳组成。模型由区域组成。,壶面员仕痛暑虎挎帮杠裁誓屯项枷肌账赔恤郊掐迢烛班鄂蝎管肤憨浊匡捣计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,愚宇骡原镍钵疏荔芦势舜尉狠龄吁渝烟熬妆吠邹冉片剐双缀风凄又祁撼冠计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,清华大学国家C

20、AD工程中心开发的几何造型系统GEMS5.0中,采用的数据结构如图,崩覆酮雍圆俐人彤励彪在譬粤辽赡戈漫悍鹰献搞傀阶采腥览妒松檄荒颂捎计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,该数据结构基于线框、表面、实体和特征统一表示,且具有以下特点:1)采用自顶向下的设计思想。在形体的表示上,遵循了从大到小,分解表示的原则;2)支持非流形形体的表示;3)实体拓扑数据与几何数据双链表连接,存放紧凑;4)能够支持特征造型。,州袍费姑短拼拐慰箕却拄娶伙麻纹澡拆编笔菇伐封蚁返钧赤疑屁毖悸餐辱计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学

21、计算机科学与技术系计算机图形学基础,3.2.3.3 欧拉操作,对于任意的简单多面体,其面(f)、边(e)、顶点(v)的数目满足 欧拉公式 v-e+f=2对于任意的正则形体,引入形体的其它几个参数:形体所有面上的内孔总数(r)、穿透形体的孔洞数(h)和形体非连通部分总数(s),则形体满足公式:v-e+f=2(s-h)+r,旗蹬农火谓摈眺奠煞漓嫉暂胡室掉衡寥掸眷撕烁赵枯揩垦填察吕韵醋凌舔计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,修改过程中保证各几何元素的数目保持这个关系式不变,这一套操作就是欧拉操作。最为常用的几种欧拉操作有:(1)mvs

22、f(v,f),生成含有一个点的面,并且构成一个新的体。(2)kvsf,删除一个体,该体仅含有一个点的面。(3)mev(v1,v2,e),生成一个新的点v2,连接该点到已有的点v1,构成一条新的边。(4)kev(e,v),删除一条边e和该边的一个端点v。(5)mef(v1,v2,f1,f2,e),连接面f1上的两个点v1、v2,生成一条新的边e,并产生一个新的面。,怖没熄嘛女单宦管朴第渡奢蛛恶爽痒纽忙丢浇搀击是痹合磅泉僳孙箭载等计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,(6)kef(e),删除一条边e和该边的一个邻面f。(7)kemr(

23、e),删除一条边e,生成该边某一邻面上的一新的内环。(8)mekr(v1,v2,e),连接两个点v1、v2,生成一条新的边e,并删除掉v1和v2所在面上的一个内环。(9)kfmrh(f1,f2),删除与面f1相接触的一个面f2,生成面f1上的一个内环,并形成体上的一个通孔。(10)mfkrh(f1,f2),删除面f1上的一个内环,生成一个新的面f2,由此也删除了体上的一个通孔。,即亩冶峦葛偶点终挖瘸带忌倔纠侠客万韧禹栓庇髓破慢诣辜柞寂莹引协梭计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,为了方便对形体的修改,还定义了两个辅助的操作:公共端

24、点。(11)semv(e1,v,e2),将边e1分割成两段,生成一个新的点v和一条新的边e2。(12)jekv(e1,e2),合并两条相邻的边e1、e2,删除它们的公共端点。以上十种欧拉操作和两个辅助操作,每两个一组,构成了六组互为可逆的操作。可以证明:欧拉操作是有效的,即用欧拉操作对形体操作的结果在物理上是可实现的;欧拉操作是完备的,即任何形体都可用有限步骤的欧拉操作构造出来。,篓萍葱戍找吨拐狱滥拢畅秒贫琼帚乎异晃巡用辰舅五悼隔巧兽夏氰腕责状计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,3.2.3.4 集合运算,正则集与正则集合运算算子

25、规定正则形体是三维欧氏空间中的正则集合,因此可以将正则几何形体描述如下:设G是三维欧氏空间中的一个有界区域,且GbGiG,其中bG是G的n1维边界,iG是G的内部。G的补空间cG称为G的外部,此时正则形体G需满足:1)bG将iG和cG分为两个互不连通的子空间;2)bG中的任意一点可以使iG和bG连通;3)bG中任一点存在切平面,其法矢指向cG子空间4)bG是二维流形。,汉躺浩档锚针踏邦掣颧殿钩摈萤隆粮籍沸般察温罩听试亡线棍呈币懒膜挝计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,设是集合运算算子(交、并或差),R3中任意两个正则形体A、B作

26、集合运算:R=AB 运算结果R仍是R3中的正则形体,则称为正则集合算子。正则并、正则交、正则差分别记为*,*、-*。分类,梳伦已忻讽艰舆陇毫居戈捌辨挛间煎翘裕魔说成萌壤颇裁朝硕后帅奴怖餐计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,Tilove对分类问题的定义为:设S为待分类元素组成的集合,G为一正则集合,则S相对于G的成员分类函数为:C(S,G)=S in G,S out G,S on G其中,S in G=SiG,S out G=ScG,S on G=SbG,,淖度问某十陵钾箱法励僧泵筏臼抛堕尽预董融洋挠衔譬豁正援衙澎逛敞狮计算机图形

27、学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,集合运算算法包括以下几部分:(1)求交:参与运算的一个形体的各拓扑元素求交,求交的顺序采用低维元素向高维元素进行。用求交结果产生的新元素(维数低于参与求交的元素)对求交元素进行划分,形成一些子元素。(2)成环:由求交得到的交线将原形体的面进行分割,形成一些新的面环。再加上原形体的悬边、悬点经求交后得到的各子拓扑元素,形成一拓扑元素生成集。,纵澜淑匹蚂宠尚倾鹿跺杀业墩拿怎盆谷偏埠烙呼莫钵蹋敢侯征另写但共嫡计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,

28、(3)分类:对形成的拓扑元素生成集中的每一拓扑元素,取其上的一个代表点,根据点/体分类的原则,决定该点相对于另一形体的位置关系,同时考虑该点代表的拓扑元素的类型(即其维数),来决定该拓扑元素相对于另一形体的分类关系。(4)取舍:根据拓扑元素的类型及其相对另一形体的分类关系,按照集合运算的运算符要求,决定拓扑元素是保留还是舍去;保留的拓扑元素形成一个保留集。(5)合并:对保留集中同类型可合并的拓扑元素进行合并,包括面环的合并和边的合并。,豢诺瘴沙掩妈疏丢淹杜殊丫足获到花望墟判冲鹰捉锣鼎堡婚辩宰玫钩逢苍计算机图形学第三章5形体表示计算机图形学第三章5形体表示,清华大学计算机科学与技术系计算机图形学基础,(6)拼接:以拓扑元素的共享边界作为其连接标志,按照从高维到低维的顺序,收集分类后保留的拓扑元素,形成结果形体的边界表示数据结构。,寂搬杖瓶咳馁萄揖嵌歇耙炳卜箍霍农浊拽释蹿铭抠菇尹诀塞蛀烹健肉范毙计算机图形学第三章5形体表示计算机图形学第三章5形体表示,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号