第4章半导体二极管三极管和场效应管.ppt
《第4章半导体二极管三极管和场效应管.ppt》由会员分享,可在线阅读,更多相关《第4章半导体二极管三极管和场效应管.ppt(66页珍藏版)》请在三一办公上搜索。
1、第 4 章 半导体二极管、三极管和场效应管,4.1PN结,4.2半导体二极管,4.3双极型晶体管,一 半导体,(一)半导体基本知识1.导体、绝缘体、半导体:物质导电能力的强弱可用电阻率()表示导体:导电能力强的物质(106*cm)半导体:常温下(27)导电能力居于导体及绝缘体之间的物质如,纯硅(Si)、纯锗(Ge)。(二)半导体的晶体结构 制作半导体件最常用的材料:硅(Si)、锗(Ge)晶体:原子按一定规律整齐排列的物质单晶体:原子与原子之间通过共价键连接起来,第一节PN结,通过一定的工艺过程,可以将半导体制成晶体。,现代电子学中,用的最多的半导体是硅和锗,它们的最外层电子(价电子)都是四个。
2、,硅(锗)的原子结构,简化模型,硅(锗)的共价键结构,自由电子,(束缚电子),空穴可在共价键内移动,(一)本征半导体:纯净的单晶结构的半导体受惯性核束缚的价电子在绝对温度零度(0K)即-273之下本征半导体硅(锗)的全部价电子都为束缚电子与理想绝缘体一样不能导电。自由电子:价电子获得足够的能量挣脱惯性核的束缚(温度0 K时)带负电荷的物质又称电子载流,这是由热激发而来的空穴:价电子成为自由电子时,原共价键留下了一个空位带正电荷的物质,即空穴载流子。,二半导体的导电原理,本征激发:共价键分裂产生电子空穴对的过程,复 合:,自由电子和空穴在运动中相遇重新结合成对消失的过程。,平 衡:,在一定条件下
3、,激发与复合的过程达到动态平衡本征半导体的自由电子和空穴的数目保持平衡。,在室温或光照下价电子获得足够能量摆脱共价键的束缚成为自由电子,并在共价键中留下一个空位(空穴)的过程。,载流子浓度:单位体积半导体中载流子的数目(个/m3)本征半导体内电子载流子浓度(Ni)=空穴载流子浓度(Pi)本征载流子浓度=Ni+Pi(其值甚微)即载流子浓度甚低 本征半导体内的载流子浓度很低导电能力很弱,故不能用来直接制作半导体器件,两种载流子,电子(自由电子),空穴,两种载流子的运动,自由电子(在共价键以外)的运动,空穴(在共价键以内)的运动,结论:,1.本征半导体中电子空穴成对出现,且数量少;,2.半导体中有电
4、子和空穴两种载流子参与导电;,3.本征半导体导电能力弱,并与温度有关。,(二)杂质半导体,1、N 型半导体:在本征半导体中掺入五价元素(磷)增大自由电子浓度,N 型,磷原子,自由电子,电子为多数载流子,空穴为少数载流子,载流子数 电子数,2、P 型半导体:在本征半导体中掺入三价元素(硼)增大空穴浓度,P 型,硼原子,空穴,空穴 多子,电子 少子,载流子数 空穴数,漂移运动:漂移电流载流子在电场作用下定向运动所形成的电流。自由电子:从低高电位漂移形成电流(方向与电场方向相反)空穴:从高低电位漂移形成电流(方向与电场方向相同)电场强、漂移速度高、载流子浓度大=总漂移电流大。扩散电流:物质由高浓度的
5、地方向低浓度的地方运动所形成的电流。浓度差越大扩散能力越强扩散电流越大扩散电流大小同载流子浓度差或扩散运动快慢成正比,(三)载流子的漂移运动和扩散运动,3.扩散和漂移达到动态平衡,扩散电流 等于漂移电流,,总电流 I=0。,三、PN 结(PN Junction)的形成P 型、N 型半导体的简化图示,P 型,N 型,1.载流子的浓度差引起多子的扩散,2.复合使交界面形成空间电荷区,(耗尽层),空间电荷区特点:,无载流子,,阻止扩散进行,,利于少子的漂移。,内建电场,P,N,内电场,外电场,外电场使多子向 PN 结移动,中和部分离子使空间电荷区变窄。,扩散运动加强形成正向电流 IF。,IF=I多子
6、 I少子 I多子,2.外加反向电压(反向偏置),reverse bias,外电场使少子背离 PN 结移动,空间电荷区变宽。,PN 结的单向导电性:正偏导通,呈小电阻,电流较大;反偏截止,电阻很大,电流近似为零。,漂移运动加强形成反向电流 IR,IR=I少子 0,四、PN结的特性(一)PN 结的单向导电性 1.外加正向电压(正向偏置),1、PN结加正向电压 当P区接“+”,N区接“-”,称为PN结正向偏置(正偏)。PN结呈导通状态,电阻很小。,2、PN结加反向电压 当N区接“+”,P区接“-”,称为PN 结反向偏置(反偏)。PN结呈截止状态,只有反向饱和电流流过,电阻很大。,结论:,(二)PN
7、结的伏安特性,反向饱和电流,温度的电压当量,电子电量,玻尔兹曼常数,当 T=300(27C):,UT=26 mV,正向特性,反向击穿,加正向电压时,加反向电压时,iIS,(四)PN结的极间电容,电容由两部分组成:势垒电容CB和扩散电容CD。,势垒电容:是由空间电荷区的离子薄层形成的。当外加电压使PN结上压降发生变化时,离子薄层的厚度也相应地随之改变,这相当PN结中存储的电荷量也随之变化,犹如电容的充放电。,扩散电容:是由多子扩散后,在PN结的另一侧面积累而形成的。因PN结正偏时,由N区扩散到P区的电子,与外电源提供的空穴相复合,形成正向电流。刚扩散过来的电子就堆积在 P 区内紧靠PN结的附近,
8、形成一定的多子浓度梯度分布曲线。,第二节半导体二极管,2.1 半导体二极管的结构和类型,2.2 二极管的伏安特性,2.3 二极管的主要参数,2.4 二极管的等效电路及应用,2.5 稳压二极管,一、半导体二极管的结构和类型,构成:,PN 结+引线+管壳=二极管(Diode),符号:,D,阳极,阴极,分类:,按材料分,硅二极管,锗二极管,按结构分,点接触型,面接触型,平面型,二、二极管的伏安特性,正向特性,Uth,死区电压,iD=0,Uth=0.5 V,0.1 V,(硅管),(锗管),U Uth,iD 急剧上升,0 U Uth,UD(on)=(0.6 1)V,硅管 0.7 V,(0.2 0.5)V
9、,锗管 0.2 V,反向特性,IS,U(BR),反向击穿,U(BR)U 0,iD=IS,0.1 A(硅),几十 A(锗),U U(BR),反向电流急剧增大,(反向击穿),反向击穿类型:,电击穿,热击穿,反向击穿原因:,齐纳击穿:(Zener),反向电场太强,将电子强行拉出共价键。(击穿电压 6 V,负温度系数),雪崩击穿:,反向电场使电子加速,动能增大,撞击使自由电子数突增。,PN 结未损坏,断电即恢复。,PN 结烧毁。反向电流过大,PN结温度升高,(击穿电压 6 V,正温度系数),特点:随着反向电流急剧增加,PN结的反向电压值增加很少。,电击穿,硅管的伏安特性,锗管的伏安特性,温度对二极管特
10、性的影响,T 升高时,,UD(on)以(2 2.5)mV/C 下降,三、二极管的主要参数,1.IF 最大整流电流(最大正向平均电流),2.URM 最高反向工作电压,为 U(BR)/2,3.IR 反向电流(越小单向导电性越好),4.fM 最高工作频率(超过时单向导电性变差),1.最大整流电流 IF,二极管长期使用时,允许流过二极管的最大正向平均电流。,2.反向击穿电压UBR,二极管反向击穿时的电压值。击穿时反向电流剧增,二极管的单向导电性被破坏,甚至过热而烧坏。手册上给出的最高反向工作电压UR一般是UBR的一半。,3.反向电流 IR,指二极管加反向峰值工作电压时的反向电流。反向电流大,说明管子的
![第4章半导体二极管三极管和场效应管.ppt_第1页](https://www.31ppt.com/fileroot1/2023-5/10/6068297d-c5b8-48e1-ac13-f8295ed841ef/6068297d-c5b8-48e1-ac13-f8295ed841ef1.gif)
![第4章半导体二极管三极管和场效应管.ppt_第2页](https://www.31ppt.com/fileroot1/2023-5/10/6068297d-c5b8-48e1-ac13-f8295ed841ef/6068297d-c5b8-48e1-ac13-f8295ed841ef2.gif)
![第4章半导体二极管三极管和场效应管.ppt_第3页](https://www.31ppt.com/fileroot1/2023-5/10/6068297d-c5b8-48e1-ac13-f8295ed841ef/6068297d-c5b8-48e1-ac13-f8295ed841ef3.gif)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 半导体 二极管 三极管 场效应
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-5136552.html