实验4时域采样理论与频域采样定理验证.docx

上传人:小飞机 文档编号:5174874 上传时间:2023-06-11 格式:DOCX 页数:8 大小:119.59KB
返回 下载 相关 举报
实验4时域采样理论与频域采样定理验证.docx_第1页
第1页 / 共8页
实验4时域采样理论与频域采样定理验证.docx_第2页
第2页 / 共8页
实验4时域采样理论与频域采样定理验证.docx_第3页
第3页 / 共8页
实验4时域采样理论与频域采样定理验证.docx_第4页
第4页 / 共8页
实验4时域采样理论与频域采样定理验证.docx_第5页
第5页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《实验4时域采样理论与频域采样定理验证.docx》由会员分享,可在线阅读,更多相关《实验4时域采样理论与频域采样定理验证.docx(8页珍藏版)》请在三一办公上搜索。

1、课程名称实验成绩指导教师实验报告一3x (t)5 (t 一 nT)e-jQtdt an=一3院系班级学号姓名日期实验4时域采样理论与频域采样定理验证一、实验目的1时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模 拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢 失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理 及其对频域采样点数选择的指导作用。二、实验原理及方法时域采样定理的要点是:. .4(a)对模拟信号气(t)以间隔T进行时域等间隔理想采样,形成的采样信号的频谱X(jQ)是 原模拟信号频谱Xa(0)以采样角频率。s(。尸2兀/T)为周

2、期进行周期延拓。公 式为:X (jQ) = FTx (t) = 1 工 X (jQ- jnQ )aaasn=一3(b)采样频率Q s必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。 理想采样信号Xa (t)和模拟信号xa (t)之间的关系为:X (t) = x (t) 2E5 (t 一 nT)n=一3对上式进行傅立叶变换,得到:(t - nT)e-jQtdtX (jQ) = X (t)乙a-3 an=一3在上式的积分号内只有当,=nT时,才有非零值,因此:文(jQ)=工 工(nT)e-j

3、QnTn=8上式中,在数值上工(nT) = x(n),再将s =QT代入,得到:a文(jQ) = x (n)ejsnn=8上式的右边就是序列的傅立叶变换X(ejs),即文(jQ) = X(ejs )|as=QT上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变 量3用QT代替即可。频域采样定理的要点是:a)对信号x(n)的频谱函数X(ej3)在0,2n上等间隔采样N点,得到X (k) = X (ejs)/ , k = 0,1,2,N 1Ns=2 兀 kN则N点IDFT乂代k)得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值区序 列,公式为:Xn (n) =

4、 IDFT Xn (k) 尸 x( n + iN )Rn (n)i=s(b)由上式可知,频域采样点数N必须大于等于时域离散信号的长度M(即NM),才能使 时域不产生混叠,则N点IDFT Xn (k)得到的序列Xn (n)就是原序列x(n),即 x (n) =x(n)。 如果NM,Xn(n)比原序列尾部多N-M个零点;如果NM,z则xn) =IDFTXk) 发生了时域混叠失真,而且Xn(n)的长度N也比x(n)的长度M短,因此。x(n)与x(n) 不相同。在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论 的要点。对比上面叙述的时域采样原理和频域采样原理,得到一个有用的结

5、论,这两个采样理 论具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。因此放在一起进 行实验。三、实验内容及步骤(1)时域采样理论的验证。给定模拟信号,七(t) = Ae-馈sin(Q01)u(t)式中 A=444.128,a =502 n,Q0 =50 J2 nrad/s,它的幅频特性曲线如图 10.2.1图10.2.1七(t)的幅频特性曲线现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。安照七(t)的幅频特性曲线,选取三种采样频率,即气=1kHz,300Hz,200Hz。观测时间选T = 50ms o为使用DFT,首先用下面公式产生时域离散信号,对三种采样 p

6、频率,采样序列按顺序用气S),x2(n),x3(n)表示。x(n) = x (nT) = Ae -oit sin(Q nT)u (nT)因为采样频率不同,得到的x (n),x (n),x (n)的长度不同,长度(点数) 123用公式N = Tp x气计算。选FFT的变换点数为M=64,序列长度不够64的尾部加零。XQ)=FFTx(n),虹0,1,2,3,-皿-1式中k代表的频率为_ 2兀k = Mk。要求:编写实验程序,计算气(n)、x2(n)和(n)的幅度特性,并绘图显示。观察分析频谱混叠失真。(2)频域采样理论的验证。给定信号如下:n +10 n 13x(n) = 27 - n 14 n

7、260 其它编写程序分别对频谱函数X(em) = FT工(n)在区间0,2兀上等间隔采样32和 16 点,得到 X32(k)和乂16(k):、(k) = XL k =侦2,3132X (k) = Xg), k = 0,1,2,1516 &= k16再分别对X (k)和乂 (k)进行32点和16点IFFT,得到工(n)和工(n):32163216勾(n) = IFFT X 32( k )32 , n = 0,1,2,(n) = IFFT X 16( k )16 , n = 0,1,2,.,15分别画出X(e加)、X (k)和乂 (k)的幅度谱,并绘图显示x(n)、x (n)和x (n)的波形,

8、32163216进行对比和分析,验证总结频域采样理论。提示:频域采样用以下方法容易变程序实现。 直接调用MATLAB函数fft计算X32(k) = FFTx(n)32就得到X(eg)在0,2兀的 32点频率域采样 抽取X32(k)的偶数点即可得到Xg)在0,2兀的16点频率域采样X 16(k),即X 16(k) = X32(2k) , k = 0,1,2,,15。Q 当然也可以按照频域采样理论,先将信号x(n)以16为周期进行周期延拓,取其主 值区(16点),再对其进行16点DFT(FFT),得到的就是X(e沁)在0,2兀的16点频率域采样 x 16( k)。四、思考题如果序列x(n)的长度为

9、M,希望得到其频谱X(eg)在0,2兀上的N点等间隔采样, 当NM时,如何用一次最少点数的DFT得到该频谱采样?五、实验报告及要求(1) 运行程序,打印要求显示的图形。(2) 分析比较实验结果,简述由实验得到的主要结论。(3) 简要回答思考题。(4) 附上程序清单和有关曲线。六、程序清单和信号波形1、时域采样理论的验证程序清单:%时域采样理论验证程序Tp=64/1000; %观察时间Tp=64微秒%产生M长采样序列x(n)% Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;f=n*Fs/M;A=444.128;alph=pi*50*2A0.5;ome

10、ga=pi*50*2A0.5;xn=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xn,M);%M 点 FFTxnt)subplot(3,1,1);plot(f,abs(Xk);xlabel(f/Hz);ylabel(|x1(jf)|);title(x1(n)的幅度特性);%=%Fs=300HzTp=64/1000; %观察时间Tp=64微秒%产生M长采样序列x(n)% Fs=1000;T=1/Fs;Fs=300;T=1/Fs;M=Tp*Fs;n=0:M-1;f=n*Fs/M;A=444.128;alph=pi*50*2A0.5;omega=pi*50*2

11、A0.5;xn=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xn,M);%M 点 FFTxnt) subplot(3,1,1);plot(f,abs(Xk);xlabel(f/Hz);ylabel(lx1(jf)l);title(x1(n)的幅度特性); %=%Fs=200HzTp=64/1000;Fs=200;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2A0.5;omega=pi*50*2A0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M);yn

12、=xa(nT);subplot(3,2,5);tstem(xnt,yn);box on; title(a) Fs=1000Hz);k=0:M-1;fk=k/Tp;subplot(3,2,6);plot(fk,abs(Xk);title(a) T*FTxa(nT),Fs=1000Hz);xlabel(f(Hz);ylabel(幅度);axis(0,Fs,0,1.2*max(abs(Xk);信号波形:)d(n)的幅.度特性f/Hz加(n)的幅度特性Jd(n)的幅度特性2、频域采样理论的验证程序清单:M=27;N=32;n=0:M;%产生M长三角波序列x(n) xa=0:floor(M/2); xb

13、= ceil(M/2)-1:-1:0; xn=xa,xb;Xk=fft(xn,1024); %1024 点 FFTx(n),用于近似序列 x(n)的 TFX32k=fft(xn,32) ;%32 点 FFTx(n) x32n=ifft(X32k); %32 点 IFFTX32(k)得到 x32(n) X16k=X32k(1:2:N);%隔点抽取 X32k 得到 X16(K)x16n=ifft(X16k,N/2); %16 点 IFFTX16(k)得到 x16(n) subplot(3,2,2);stem(n,xn,.);box ontitle(b)三角波序列 x(n);xlabel(n);yl

14、abel(x(n);axis(0,32,0,20) k=0:1023;wk=2*k/1024;%subplot(3,2,1);plot(wk,abs(Xk);title(a)FTx(n);xlabel(omega/pi);ylabel(IX(eAjAomega)l);axis(0,1,0,200)k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),.);box ontitle(c) 16 点频域采样);xlabel(k);ylabel(IX_1_6(k)I);axis(0,8,0,200) n1=0:N/2-1;subplot(3,2,4);stem(n1,x1

15、6n,.);box ontitle(d) 16 点 IDFTX_1_6(k);xlabel(n);ylabel(x_1_6(n);axis(0,32,0,20) k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),.);box ontitle(e) 32 点频域采样);xlabel(k);ylabel(IX_3_2(k)I);axis(0,16,0,200) n1=0:N-1;subplot(3,2,6);stem(n1,x32n,.);box ontitle(f) 32 点 IDFTX_3_2(k);xlabel(n);ylabel(x_3_2(n);axis(0

16、,32,0,20) 信号波形:(日)FTx(n)(b)三角波序列枷)M 1002001000246 BCD/7I(功1E点频域采样何)熨点频域采样0102030n加)18点 IDFTfk)20弓10T0 W 2030200 100 -0 -*051015n:E.Z 点 IDFTpk)20 |&+Tf+10 -衬口士材1【11 川11 II 111松.n0102030思考题简答先对原序列x(n)以N为周期进行周期延拓后取主值区序列,x (n)=芝 x(n + iN)R (n)再计算N点DFT则得到N点频域采样:X (k) = DFTx (n) =X(幻), k = 0,1,2,N -1NN N=2kN七、实验总结1由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。 当采样频率为1000Hz时频谱混叠很小;当采样频率为300Hz时,在折叠频率150Hz附近 频谱混叠很严重;当采样频率为200Hz时,在折叠频率110Hz附近频谱混叠更很严重。2频域采样定理的图验证了频域采样理论和频域采样定理。对信号x(n)的 频谱函数X(ej3)在0, 2n上等间隔采样N=16时,N点IDFTXn(k)得到的 序列正是原序列x(n)以16为周期进行周期延拓后的主值区序列:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号