小动物PET实验系统测量.docx

上传人:小飞机 文档编号:5177471 上传时间:2023-06-11 格式:DOCX 页数:15 大小:342.54KB
返回 下载 相关 举报
小动物PET实验系统测量.docx_第1页
第1页 / 共15页
小动物PET实验系统测量.docx_第2页
第2页 / 共15页
小动物PET实验系统测量.docx_第3页
第3页 / 共15页
小动物PET实验系统测量.docx_第4页
第4页 / 共15页
小动物PET实验系统测量.docx_第5页
第5页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《小动物PET实验系统测量.docx》由会员分享,可在线阅读,更多相关《小动物PET实验系统测量.docx(15页珍藏版)》请在三一办公上搜索。

1、小动物PET实验系统测量摘要:PET技术对人类的癌症治疗起着非常关键的作用,所以对其的研究和开 发已成为必然趋势。由于某大学核学院近年来刚刚引进小动物PET的设备并准 备对PET展开研究,所以本论文的主要内容是针对本校PET实验系统开展的测 量与调试。这里的测量是指对设备性能的了解,如设备的空间分辨能力,时间分 辨能力,和能量分辨率。而能量分辨率将在文章里做主要讨论。而调试顾名思义 就是利用测试结果对设备进行调整,使其达到最佳工作状态。本设计的具体工作 是对PET系统中LYSO晶体探头的能量分辨率进行测试和总结。关键词:正电子发射断层(PET);阵列型硅酸钇镥闪烁体(LYSO);能量分 辨率。

2、第一章:PET的简介1.1应用与发展正电子发射断层显像(Positron Emission Tomography),是一种核医学成像 技术。其简称为?目前是一种新兴的肿瘤(癌症)检测技术。其优点是:1. 能判断肿瘤位置,且精度极高,并能做到三维立体成像,这样外科医生就能在后 续的手术过程中定点切除肿瘤(癌细胞)。2.剂量小于X光片,病人不用承受 主动的(外界)射线照射,而是通过内部发光来进行检查,所以不会对身体造成 太大危害。3.无需开刀,病人在检查过程中没有任何痛苦。目前,PET技术已经在欧美一些国家普及,但在中国还未做到能给普通老百 姓看病的程度,因为做一次PET需要上万元,在中国只有富人

3、做得起,比如在 北京309医院,一次PET要13000元。上海可能便宜一些。而一些中小城市索 性就没有PET。因此PET在中国有大量市场可挖,有大笔钱可赚。现在我国的 PET设备基本来自于进口,如德国SIEMENS的Biogralih HR 16 PET/CT,荷兰 PHILIPS的Vereos PET/CT,美国GE的Discovery PET等。长期进口国外设备既 耗费大量资金,又在技术上有受制于人。所以现在,对于我国的核科学工作者和医学工作者来说,研发出自己的PET设备是PET是目前最有前途,技术含量最高,最复杂的医疗设备之一。全国各大学 及研究机构也已展开对PET的研究与开发。目前北京

4、大学,清华大学,解放军 总院已经得出大量PET的研究成果。某大学也于近年来购进一批PET设备,开 始对PET展开研究。而本实验主要研究对象是兰大核学院的PET成像设备中的一部分,主要目 的是得出LYSO闪烁体的性能参数。具体的PET成像系统由探测器探测器模块、 核数据获取模块、和图像重建模块组成。这些都会在后文中详细提到。在实验中 我们利用计算机来记录数据,之后使用Matlab编程来处理数据,并用Matlab的 绘图功能来重建图像。本文在这里也确实有一定局限性,因为我院刚刚对PET 展开研究,大量部件如探头的移动导轨和移动臂还未购进,当然我们目前的技术 也不允许进行移动测量。所以本文也仅先针对

5、阵列型闪烁体进行研究,所有结果 也只适用于我院的PET实验室。同时在做实验的过程中调试设备(阈值、放大 倍数、成形时间),使设备性能达到最佳,以此来对后续的研究工作做准备。第二章:PET的基本原理及系统组成2.1发光机理2.1.1放射性药物PET放射性药物属于诊断用放射性药物(diagnostic radiopharmaceuticals)o 它其实是一种用放射性核素标记的多糖,其中的放射性核素通常要求能够发射正 电子。常用的发射正电子的核素,主要是用加速器生产,现在有一部分可以从核 素发生器得到。PET常用的标记核素11C、甫、或、18F等均是组成生物体的固有 元素,用这些元素标记得到的放射

6、性药物不会影响药物原有的生物活性。并且半 衰期短,患者的所受辐射剂量小。其中康-FDG是应用最多的,即氟代脱氧葡萄 糖,其完整的化学名称为2-氟-2-脱氧-D-葡萄糖,简称为FDG。恶性肿瘤细胞由 于代谢旺盛,导致对葡萄糖的需求增加,因此静脉注射葡萄糖类似物一一18FDG 后,大多数肿瘤病灶会表现为对18FDG的高摄取,因此应用18FDG PET-CT显像 可早期发现全身肿瘤原发及转移病灶,准确判断其良、恶性,从而正确指导临床 治疗决策。1995年山东淄博万杰医院从GE引进成套设备,开始了中国真正意义上的正电 子药物生产和应用,但该设备仅生产18F-FDG和13N-NH+4两种正电子药物。中国

7、 科学院上海应用物理研究所同期也引进IBA加速器和合成器,为医院引进的PET 提供18F-FDG药物。90年代末北京、上海、广州相继引进小型质子加速器,生产TmantHMraIW511&V photons pndudparam jflfcLnucleus 禁PratmdiecaionartroflrnnudetrarPrairon and anfrflHrtrinoemittedcmbineswith etediDn and annihilates18F-FDG以供临床使用。2000年在北京召开的 第一届高能正电子会议上,仅有18F-FDG和 13N-NH+4两种药物的报道;到2002年上海召

8、 开第二届高能正电子会议才有 11C-Raclopride和11C-胆碱等药物的报道。 此后国内研究和临床应用的正电子药物不断增加,目前其种类已经超过了 20种2.1.2正电子湮灭前面已讲放射性药物中的核素必须能够发生正电子衰变。正电子衰变(positron decay)发生在贫中子核素中,原子核中的一个质子转变为中子。衰 变时发射一个正电子和一个中微子(neutrino,v),质子数减少1,质量数不 变,衰变反应方程式为:aX T aY + P + +v + Q正电子的射程仅12mm,正电子与负电子发生湮灭,转变成两个能量511kev、 方向相反的Y光子,如图2.1。利用符合线路技术探测相反

9、方向的两个Y光子就 可以用于PET显像。图2.1正电子发射2.2.1闪烁体图2.2 LYSO晶体2.2核探测器(探头)Lutetium-yttriumoxyorthosilicate,alsoknown as LYSO, is an inorganic chemical compound with main use as a scintillator crystal. Its chemical formula is Lu2(i_x)Y2xSiO5. It is commonly used to build electromagnetic calorimeters in particle phy

10、sics. LYSO crystals have the advantages of high light output and density, quick decay time, excellent energy resolution.硅酸钇镥闪烁体,就是我们所说的LYSO,是一种无机的化学合成晶体,主要 用来做核探测器的闪烁体。它的化学式是Lu2 Y2SiO5,经常作为物理实验中的 电磁测量计。LYSO晶体的优点是高的光电输出和密虞快的时间响应,和好的 能量分辨率。原则上,所有的gamma探测器都可以用作核医学成像探测器。但我们为什么 选用lyso而不用其它闪烁体呢(如NaI)?作为对比

11、我们列出其它一些闪烁体与 lyso作对比对比:闪烁体 性能参数LYSONaI (Tl)BGO塑料闪烁体最大发光波长(nm)420410480480折射率1.811.852.151.60发光衰减时间(ns )412303001.33.3发光产额(photon s /kev)3238810密度(g/cm)7.13.672.151.05那么从上表我们可以看出,在材料密度上最具优势的就是LYSO 了,大密度 意味着Y射线的能量损失更快,也就意味着走过同样距离产生更多的光子数,其 能量分辨,位置分辨率也就越高。而且它的时间分辨率也比NaI (Tl)和BGO 要快很多。同时它的发光产额和位置分辨能力又是塑

12、料闪烁体根本不具备的的。 所以LYSO晶体是做PET探头的最佳选择。2.2.2光电倍增管图2.3光电倍增管具体的LYSO晶体是由18X18=324个小长方体组成的大的阵列长方体,它能 够探测得到位置信息正是由于其18X18的网格形排布使得光子进入其中某个网 格时能得出不一样的输出信号,通过输出信号的不同就能够得到不同的位置信 息。闪烁体接受到电离辐射时会产生的荧光光 子,为了产生电信号,我们在闪烁体后加装光电 倍增管。其原理如下:(1)光阴极以硅胶与闪 烁体进行耦合,荧光光子打到光阴极上产生电 子。(2)打拿极是一大堆均匀排布加了正高压 的电极,电子被加速打到打拿极上撞出多个电 子,这些电子又

13、被加速打出更多电子,以此类推, 最后在阳极上输出电信号。(3)输出针管,用来连接后续电路,如前置放大器。2.2.3光导图2.4光导可加装于闪烁体之后,光电倍增管之前,当然也 可不加。加装光导的好处是,可加强光子的透过率, 使光电倍增管更有效地收集光子。人们使用多个光电 倍增管,利用分光原理读出多个晶体(或晶体阵列),称为Anger-Type探测器,它改 善了探头的位置分辨能力,并使探头的在几何安排上更为容易,但由于PMT的有 效面积较小,探头的死区较大,所以仍然无法满足对PET的位置分辨能力越来越 高的要求现在探测器采用闪烁晶体阵列+位置灵敏型光电倍增管的方案,它用光 纤将闪烁晶体阵列耦合于多

14、通道光电倍增管(Multi -ChannelPMT)。2.2.4前置放大器由三级管组成的放大电路,体积较小,直接与光电倍增管的输出针管相连, 用来预防大信号,降低噪声。整个核探测器就是由闪烁体(可加装光导),光电倍增管和前置放大器组成。2.3后续电子学如图,基本的核探测系统如下:图2.5探头和前置放大器我们在前面已经说过,下面来说主放大器。主放大器同样 是由三极管构成,只不过三极管的数量更多,其放大倍数更大而已。前放出来的 信号经过主放会得到进一步放大,这样才能使信号的大小可以被或许电路识别并 记录。接下来是数据采集器(数据获取系统),它由线性门Linear GatePhilips Scien

15、tific NIM MODEL 744、恒比定时甄别器 Discriminator ORTEC 935 CFD、延时产生器 Delay Generator Philips Scientific NIM MODEL794 组成。线性门Linear Gate:由Philips公司生产的NIM MODEL 744用于把主放出来 的双极性信号转成单极性信号,这样才能被转化成连续的数字信号。恒比定时甄别器Discriminator:由ORTEC公司生产的935 CFD用于提供一个触发阈,并选出信号幅度。由于输入信号类似于一个高斯波形,其 峰值才包含有有效信息,所以935 CFD的任务就是找到信号的峰值,

16、并记录之。延时产生器Delay Generator:由Philips公司生产的NIM MODEL794用于把信号进行延时处理。由于本实验设计有四路信号输入,而每路信号产生时刻都不 严格相同,所以必需由NIM MODEL794来把各路信号的时间调为一致。以上由744到935再到794,一级一级地把初始信号调制成有效信号,接下 来就需要把有效的模拟信号转换成数字信号,这时就需要有ADC即模数转换器。 这里不再赘述其原理。接上ADC可把模拟信号转为数字信号,之后就能连接计 算机。这样一套核数据获取与处理系统便搭建完成了。核数据获取模块如图:(转下页)图2.6实验室的PET数据采集系统当然,计算机中必

17、须有配套的操作软件。这里我们有National Instrument公司 的SignalExpress 2013和CAEN公司的CAENN568EControlSw软件来控制计算机 采集信号数据。第三章实验目的与实验方法3.1实验目的本实验主要任务是测量LYSO闪烁体探头的能量分辨率。目前实验室有两个 探头。第一个探头中的闪烁体是与光电倍增管直接耦合的,第二个探头中的闪烁 体后加装了光导,然后再与光电倍增管进行耦合。所以本实验就是要对比探头中 闪烁体加装光导和不加光导时的能量分辨率变化。这里说明一下,能量分辨率就是指探测器所得到的能谱的全能峰的半高全宽。即(FWHM) : full width

18、 at half maximumFWHM=峰的半高宽度(道数)/峰最高处的计数如果FWHM越小则说明探测器的能量分辨率越好,若FWHM越大则说明探 测器的能量分辨率越差。我们的理论预期是加装光导的探头比不加光导的探头的能量分辨率要好,所 以我们要用实验加以证实。3.2实验方法1. 标准放射源:本实验选用放射源137Cs,放射性活度0.8864(uCi)。放射源24iAm, 放射性活度1.7829(uCi)。2. 测量:将放射源放入暗箱中并对准探头。打开NIM机箱开关预热。调节阈值 -4.4v-5.1v之间,原则是尽量减小噪声,但不减少有用信号。探头所加电压800v。打开CAEN测量软件,设置每

19、个波形记415个点不等,因为935 CFD已经记 录峰值信号,多余的点在后续处理中用处并不大。采样时间不定,因为数据量与 源强有关,强源的采样时间可以比弱源的短,两套仪器的时间快慢也各不相同。 但归根到底采样时间越长技术的统计误差越小,所以我们设置的采样时间一般都 在3个小时以上。最后设置好各参数,开始测量。3. 数据读出:我们把采集到的数据存放到D盘的Data文件夹内,以记事本的格 式记录,得到的是一个n行乘4列的数组(矩阵),其中n大概为百万的量级, 根据源的活度有较大起伏。比如活度小的源如60Co有24万行,而活度大的源在 相同的采集时间下则有五百多万行,如137CS.4. 数据的分析:

20、前面已讲,我们的主要任务是测量探头的能量分辨率。所以现 在我们就需要要用现有数据得到能谱。现有数据是存在记事本文件中的,即能谱 不能像装有的能谱软件的DOS系统那样能现采现得。所以我们就需要用Matlab 软件来编程处理数据,具体处理方法我们下一章再讲。第四章核数据的分析和处理4.1数据的分析前面我们已讲如何测量并得到数据,我们现在也通过实验得到了数据,那现在 就先随意抽出一部分数据简单的分析一下。以下是记事本格式的: -7.273664E-2 -9.013269E-2 -7.015944E-2 -1.384551E-1-7.660243E-2 -9.496493E-2 -5.598488E-

21、2 -1.043073E-1-2.505856E-2 -5.952852E-2 -6.629365E-2 -1.658378E-1-1.191261E-1 -1.300792E-1 -1.052737E-1 -1.648713E-1-8.562260E-2 -8.916624E-2 -6.017282E-2 -4.857545E-27.574416E-1 4.816820E-1 6.997545E-2 3.019228E-1-3.114492E-1 -3.414091E-1 -1.426430E-1 -1.063024E+0-7.553710E-1 -2.698920E-1 -6.790440

22、E-2 -3.314225E-1-3.762237E-2 2.165307E-2 -1.925987E-2 1.327945E-12.242849E-1 1.005796E-1 -1.474978E-2 1.878820E-1-7.273664E-2 -6.597150E-2 -4.213246E-2 -1.094616E-1-7.112589E-2 -6.822655E-2 -4.664255E-2 -1.094616E-1-7.177019E-2 -6.564935E-2 -4.213246E-2 -1.062402E-1-7.434738E-2 -6.564935E-2 5.708948

23、E-2 -1.062402E-1-1.088399E-2 -2.924650E-2 -7.660243E-2 -1.142939E-1可以看到,一共有15行,4列。这是一组从不加光导的设备中采集到的137CS 的数据。采集设置为:一个波形采4个点,采集时间3个小时。其中峰值一个点, 其它位置平均分配三个点。所以可以看出,每四列为一组,其中最大值就是峰值, 我们在数据处理中就需要把峰值找出。并把峰值做统计图,出来的统计图就是能 谱图。本实验一共测量两个放射源137CS,241Am。其中每个放射源先用不带光导的从上面我们已经看到,数据是密密麻麻的,且量很大(总共有550多万行), 所以此时就需要用

24、Matlab来进行数据处理。4.2数据的处理紧接着上面我们现在来处理数据,首先我们要把数据导入Matlab,形成一个 550多万行X4列矩阵。如下图(只显示一部分):PWT_4Ch_02.txtABCDVarNam&l VarNamel VarName3 VarNamc4数直 ,数直 数直 救直 ,1-7.273664.-9.013259.-7.015944.-1.384551.2-7.&60243.-9.49&493.-5.59848S.4).10430733-2.5O585&.-5.952B52.-&.&29365.-1.658.37S.4-1.191261.-1.300792.-1.05

25、2737.-1.&48.713.5-8.5&2260.-8.gi&24.-&.017282.-4.857545.&7.57441 &E.4.816320.6.997545 E.3.O19228E.7-3.114492.-3.414091.-1.426430.-1.063024.B-7.553710.-2.&9892O.-&.790440.-3.314225.g-3.762237.2.1S5307E.-1.925987.L.327945E.1.02.242849E.1.005796E.-1.474978.L.873820E.11-7.273664.-6.597150.-4.213246.-1.-

26、094616.12-7.112589.-6.822&55.-4.664255.-1.-094616.1.3-7.177019.-6.564935.-4.213246.-1.062402.14-7.434738.-6.5&4935.5.70a94&E.-1.062402.15-1,088399,-2.924650.-7,660243.-1,142939.16-1,394215,-4.599825,6.933115 E,3.27025SE,.,174.3883&2E.-3.117939.-1,091395.-7.-09&25&,18-7,434515,2508852-1,107502.-4.-&0

27、2421,19-2.218917,-2.2&O351,4.93579OE,3.486119E,.,20L.559S93E.8.125067E,9,473093 E,1.598551E.图4 .1矩阵变成矩阵后我们用编程的手段来把能谱得到,思路是这样的:由于一个波形 是由四个点组成的,所以要找出这四个点里最大的点,就需要把数据拆成一列四 个元素的矩阵,再从这四个元素中找最大值。难点在于,导入Matlab中的矩阵 每一列分别代表一路输出的信号,故需要把4.1图中的矩阵在拆分成四个单独的 列,然后每列单独处理,再把处理后的四列相加,得到总的的统计数据。最后才 能把这个数据进行绘图。具体的编程如下:a

28、1=VarName1;a2=VarName2;a3=VarName3;a4=VarName4;%导入数据,并把矩阵拆 成4列。一b1=size(a1);%计算每列中有多少元素。c1=floor(b1/4);%找出对应n行X4列的矩阵的应有的行数。d1=c1*4;%得到合适的行数n。一e=d1(1);x=c1(1);%把参数变为标量。f1=a1(1:e);f2=a2(1:e);f3=a3(1:e);f4=a4(1:e);% 得到合适的数据列。g1=reshape(f1,4,x);g2=reshape(f2,4,x);g3=reshape(f3,4,x);g4=reshape(f4,4,x);%

29、把数 据列变为矩阵。h1=max(g1,1);h2=max(g2,1);h3=max(g3,1);h4=max(g4,1);% 找到每列的最 大值。y=h1+h2+h3+h4;% 各路相加。hits(y,e);% 绘图。以上就是程序的编辑。编辑好程序之后点击运行,能谱图便能够出来。当然 上面的程序是为四个点的波形使用的,如果波形里有 15个点的话,只要把 c1=floor(b1/4),d1=c1*4,g1=reshape(f1,4,x)中的 4 改成 15 就可以了。接下来我们要做的是把241Am,137Cs不加光导时的数据导入Matlab中运行一 遍,得到两个能谱。再把它们加装光导时的数据导

30、入Matlab运行一遍,再得到 两个能谱。之后根据能谱的半高宽来判断加光导与不加光导时的能量分辨率好 坏。第五章结论5.1实验结果及讨论前面我们已把数据分析和处理完了,下面我们来看结果。下图是241Am未加光导时的的能谱图:图5.1未加光导24Am的能谱Am241不加光导 峰值道址:1.48峰高(计数):33 半高道址一:0.731 (12) 半高道址二:2.44 (11) 半高宽:2.44-0.731=1.709 能量分辨率:1.709/33=0.05179下图是241Am加光导时的能谱:图5.2加光导的241Am能谱峰值道址:1.91峰高:198半高道址一:0.97 (99)半高道址二:2

31、.79 (99)半高宽:2.79-0.97=1.82能量分辨率:1.82/198=0.009192下图是13球未加装光导时的能谱:图5.3未加光导时13Cs的能谱峰值道址:1.59峰高:115半高道址一:0.983 (57)半高道址二:2.15 (57)半高宽:2.15-0.983=1.167能量分辨率:1.167/115=0.01014下图是137Cs加装光导时的能谱:图5.413Cs加光导时的能谱1峰值道址2.24峰高262。半高道址一:1.23 (131)半高道址二:2.70(131)半高宽:2.70-1.23=1.47能量分辨率:1.47/262=0.00561为方便比较,我们可以列表

32、如下:-能量分辨率 放射源-.不加光导加装光导137Cs0.010140.00561241Am0.051790.00919从表中不难看出加装光导的比不加光导的探头分辨率要好很多。分别为:137Cs加光导时比不加光导能量分辨率好1.807倍。241Am加光导时比不加光导能量分辨率好5.635倍。同时,加装了光导的探头在测量137Cs时,在相同的测量时间下,总计数为538 万。而不加光导的探头的测得总计数为250万。这充分说明采用了通过光导将LYSO晶体耦合在位置灵敏型光电倍增管上的 探头组成方式很好地提高了探头的能量分辨能力和有效面积。5.2小结通过系统搭建和数据采集,我们得到了初步的实验结果。

33、比如LYSO晶体探 头的位置谱和能谱,位置谱反映了探头对放射源位置的灵敏度。而我负责画出的 能谱则反映了探头的能量分辨率。当然每次测量得到的能量分辨率是不同的,它 和测量时间,被测量的放射源的活度,能量,还有不同的实验平台都有关系。但 总的来说,我们的实验结果达到了预期。就拿以前做过的NaI(Tl)探头来做比 较,同样是i37Cs源的能谱,NaI(Tl)的FWHM基本上是8%,有时甚至达到 10%。而我们的LYSO晶体探头的能量分辨率最差也能达到5%。对于光导的选 择我们也达到了预期的效果。比如加光导时比不加光导时测量137Cs得到的能量 分辨率要提高近一倍,能够从1%一下精确到0.5%。同时

34、加光导还提高了 PMT 的有效面积和光子的透过率,使得整套设备的计数率提高了许多。而从整套系统上来讲,我们最大的亮点在于能够扣除大量的本底,并能彻底 地去掉各种无用的计数平台和散射峰,这也是我在以前用其它系统平台做实验时 所做不到的。当然本套系统的搭建还未完成,比如PET系统必有的移动旋转平 台还未安装,只用到了单探头导致不能进行符合测量等等。这些都是要在下一步 工作中完成的。总的来讲,LYSO这种新型的闪烁晶体有着强大的阻止本领和发光性能,它 在PET中运用能有效地提高计数率,减小偶然符合。它同时具有很好的能量分 辨率,其信号便于用光纤读出,能大大提高探测器方阵位置分辨率。目前在本实验 室的小动物PET中,一套采用了闪烁晶体直接与光电倍增管耦合的方式。另一套 在晶体与PMT之间使用光导,大大加强了光子的透过率,使得系统探测效率有 很大提高。当然,对LYSO的研究还不仅于此,我们还需继续努力,为将来开发 出我国自主的PET而奋斗。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号