动态平衡阀及其在暖通空调工程中的应用.doc

上传人:sccc 文档编号:5191682 上传时间:2023-06-12 格式:DOC 页数:12 大小:74.50KB
返回 下载 相关 举报
动态平衡阀及其在暖通空调工程中的应用.doc_第1页
第1页 / 共12页
动态平衡阀及其在暖通空调工程中的应用.doc_第2页
第2页 / 共12页
动态平衡阀及其在暖通空调工程中的应用.doc_第3页
第3页 / 共12页
动态平衡阀及其在暖通空调工程中的应用.doc_第4页
第4页 / 共12页
动态平衡阀及其在暖通空调工程中的应用.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《动态平衡阀及其在暖通空调工程中的应用.doc》由会员分享,可在线阅读,更多相关《动态平衡阀及其在暖通空调工程中的应用.doc(12页珍藏版)》请在三一办公上搜索。

1、动态平衡阀及其在暖通空调工程中的应用摘要: 随着我国国民经济的高速发展,城市的建筑建设规模越来越大,人们对室内环境的要求也越来越高。尤其是建设在黄金地带的商业建筑,如何能提高有效的商用面积率,保证空调系统的使用和运行并不由此而增加能耗,是暖通专业及建筑开发商共同关注的问题。 关键词: 平衡阀 室内环境 水利失调 负荷调节 随着我国国民经济的高速发展,城市的建筑建设规模越来越大,人们对室内环境的要求也越来越高。尤其是建设在黄金地带的商业建筑,如何能提高有效的商用面积率:保证空调系统的使用和运行并不由此而增加能耗?是暖通专业及建筑开发商共同关注的问题。 1 暖通空调设计中水力系统的现状无论是空调或

2、采暖工程中,由于条件的制约及不可能完全采用同程系统。而异程系统在实际的设计中,为了保证系统最不利环路末端的资用压头,所有其他空调采暖设备末端的资用压头往往大于设计工况的需要值,特别是在规模大建筑功能复杂的工程中,异程管线长,末端设备的阻力差异大及空调末端启停差异大的系统,在靠近冷热源位置的资用压头余量过大,往往出现流量分配偏离设计状态,导致其系统水力失调。流量的偏差会产生冷热源近端的空调太凉或采暖不热的现象。不但不能保证使用的功能,还造成了能源上的浪费。2 解决水利失调的办法2.1 加节流孔板在热力入口或空调靠近冷源环路的部分管段上增加节流孔板。采用这种办法解决水力失调的前提是:水系统阻力计算

3、准确、热力或空调末端流量不能发生变化。因此在末端流量变化时仍会造成水力失调及能源上的浪费。2.2 安装手动调节阀对大型空调系统而言,采用手动调节阀调节过程复杂,手动调节前端阀门,后端流量会受影响。后端调整流量,前端流量又会变化。因此调节费时费力;对于复杂系统,要求调节阀门的工程师经验丰富。并且一旦系统压力或负荷发生变化仍需要重新调整水力系统。2.3 安装动态流量平衡阀热力入口或空调设备末端的设计流量确定后,根据流量及阀门处的压力变化范围选定动态平衡阀,安上设置好的阀门既可使用。只要阀门处的压差变化在阀门的设计压力范围内,无需任何人为的调节。3 动态平衡阀的特点 3.1 动态平衡阀的工作原理:通

4、过改变平衡阀的阀芯的过流面积来适应阀门前后的变化,从而达到控制流量的目的。动态平衡阀是一个局部阻力可以变化的节流元件,对于不可压缩的流体其简化流量的方程为: Q=KA(P)式中:Q通过平衡阀的流量;K阀门开度的流量系数;A阀芯的过流面积P阀门进出口压差由于在阀门的开度不变的前提下,K值的变化可忽略,因此阀门的流量要保持恒定应控制A(P)?不变。而平衡阀由可变过流面积的阀胆和高精度(5%)的弹簧及支撑装置构成。弹簧受压差的作用自动控制阀胆上过流面积的大小,从而使通过阀门的流量恒定。3.2 阀门的工作过程:当平衡阀前后压差小于最小启动压差是弹簧未被压缩,流通面积最大。当阀门前后压差在工作范围时阀胆

5、压缩弹簧,进入工作状态,水流通过阀胆两边的圆孔和几何型的通道流过;由于阀胆在运动,两边几何流型的通道也因此变化阀体的流通面积不断变化,在这一压差范围内水流流量基本保持恒定。当平衡阀前后压差超越工作范围是,阀胆完全压缩弹簧,水流只从阀胆两边的圆孔流过,此时阀胆变成了固定的调节器,流量与压差成正比,随压差的增大而增大。动态平衡阀具有在一定的压力范围内限制空调末端设备的最大流量、自动恒定流量的特点,在大工型、复杂、空调采暖负荷不恒定的工程中,简化了系统调试过成,并缩短了调试时间。特别是在异程水系统中使用平衡阀,可以容易实现水力工况平衡、满足设计环境温度的要求,并且在空调系统的运行中末端设备可以不受其

6、他末端的启停干扰。4 动态平衡阀在实际工程中的应用 4.1 区域供暖热力入口处采用动态平衡阀,保证系统所需流量。室内采暖系统,温控阀保证每个散热器通过所需流量,动态平衡阀保证各立管流量恒定,解决水平失调。4.2 空调系统大型集中空调系统中,在空调设备(空气处理机及风机盘管)末端设置平衡阀,通过三通(或两通)电动阀保证设备所需流量,平衡阀实现水力工况调节。在冷热源,冷却塔、水泵等处当设计管线受限时。用平衡阀来避免负荷偏载,保证设备的正常运行。5 空调系统设计动态平衡阀反感因该注意的问题5.1 动态平衡阀只起水力平衡的作用,不能用于负荷调节由于对动态平衡阀的误解,容易认为平衡阀也能平衡空调或采暖负

7、荷,用平衡阀取代电动三通阀或两通阀。但随着维护结构负荷或室内负荷(人员、设备、照明等)的动态变化,要求空调设备提供的水量也动态变化,才能如人所愿既能保证室内温度的要求、又起到了节省的作用。在大型空调系统中,空调设备设置了平衡阀后;各个设备的启停不会干扰影响其他设备的水流量,平衡阀起到了水力平衡的作用;而电动三通或两通阀节流,能够调节环境负荷所需数量。目前,带电动自控制功能的动态平衡阀已经面市,按负荷需求动态平衡空调系统实行节能就更容易实现了。因此采用带电动自控功能的动态平衡阀,可以将水力平衡与负荷调节合二为一,并直接用电脑控制设定流量,还简化了安装及便于安装在狭小的空间内。5.2 动态平衡阀不

8、应该多极设置在空调设置中,手动调节阀是多极设计的。而按照这一方法多极设置动态平衡阀设计概念是不对的。其理由是:如果下级的一个或多个设备关闭电动阀,而上级平衡阀扔保持流量不变,则会造成下级未关闭的设备流量增加,不但加大了水流噪声,还会影响使用功能,并且也增加了不必要的经济投资。5.3 空调设计中应根据冬夏供回水温差水量合理设置动态平衡阀在四管制空调系统中用两个平衡阀是可以满足冬季及夏季不同的水量要求的,当冬、夏季节空调供热、冷水温差不同时,水流量差异很大,因此在两管制水系统中则应根据冬、夏季不同流量的要求设置平衡阀:方法一,设置可变流量型动态平衡阀,冬夏换季时转换阀门。方法二,设置两个平衡阀,阀

9、1按冬季流量选择阀门,阀2按夏、冬季最大水量之差选择阀门,冬季阀1,夏季开两个阀,用两个阀门实现空调设备的四管制功能。方法三,采用带自控装置的动态平衡阀通过电脑设置流量。否则,由于冬季夏季空调水流量不同,而简单在空调末端上设置固定流量的动态平衡阀是不可能满足两个季节的水量平衡的。6 动态平衡阀工程设计实例6.1 工程简介座落在北京繁华的王俯井商业街的新东安市场,是由北京东安集团与香港新鸿基房地产发展有限公司合资兴建的工程,占地面积约21400m2。工程建设规模庞大,建筑平面分为A、B、C、D四个区,其中A、B、区为新东安市场部分;D区为动城区回迁部分。地下三层,地上六层,裙房之上的写字楼为十一

10、层。(图1 新东安市场平面分区示意图)新东安市场冷冻机房总负荷为10450RT(约36750KW)。空调水由地下三层冷冻房引至地下二层。为了减小非商用面积。水系统为下供下回双管异程式系统。从地下二层至各区的20个空调水管井。风机盘管水系统根据建筑负荷特点分为内区,外区两个环路。内区只供冷冻水,外区冬季供热水。根据气候及室内符合情况,通过楼宇自控系统在地下二层按竖井电动切换控制外区双温水的冷、热水开关。6.2 空调设计的平衡阀方案对于冷冻机组和冷冻泵来说,为了避免由于各种因素造成的负荷偏载发生,在冷冻机和定水流量的二次泵出口上安装了平衡阀。由于新东安市场建筑平面大,并且业主及建筑师要求“黄金之地

11、”有效商用面积率高,因此设备用房和管井面积小,并其位置也很不利,这样对纵向达108m,横向跨越270m的管路系统来说,管路的阻力平衡和系统调试的困难是相当大的。为了解决水系统“管线长,难平衡”的困难,设计过程中拟订了两套平衡方案。方案一:多极设置普通水管井间安装平衡阀 在主管线与20个暖通水管井间安装平衡阀 在竖井出口位置安装平衡阀 在每个空调箱上安装平衡阀 在每个租户的出水口上安装平衡阀方案二:使用动态平衡阀 在末端装置风机盘管上安装平衡阀 在末端装置空调箱上安装平衡阀经过经济比较,最终采纳的平衡阀方案是空调箱末端安装平衡阀及自控阀零售和内区写字楼两或三个风机盘管合用一个平衡阀及自控阀,外区

12、写字楼每个风机盘管自用一个平衡阀及自控阀。6.3 平衡阀应用总结 长管线异程大系统多级安装普通平衡阀价格高于末端设备一级动态平衡阀。 在末端装置上安装动态平衡阀,维修时影响的范围小,并各租户空调设备启停的影响。 动态平衡阀自带过滤器,避免了水系统管路中的污垢对自控阀门的损伤。 由于动态平衡阀在某一段压力范围内的误差只有5%,其些设备的开或关对其他设备的流量几乎没有影响,保证了末端装置水流量的稳定性。新东安市场工程是政府关注的工程,工期紧;随着市场的变化也引起了工程设计的多次变化。因此工程等不及调试就马上开业,虽然调试工作仍未全面进行,但由于使用了动态平衡阀,空调面积达18万平方米的异程水系统,

13、“不调即用”的确使业主受益。整个新东安市场建筑功能比较复杂,内含写、,计算机网络中心、商场、零售店铺、餐饮、电影院等,其建筑平面复杂、变化多端。其建筑功能也不可能相对集中。业主要求设计要作到动态适应市场的变化以不变应万变,因此空调负荷的性质多变、各区、各类的空调最大负荷时刻也不相同。然而正式采用了正确的设计方案和这种不受其他空调末端启停干扰的动态平衡阀,动态保持各开启末端的流量,使这个庞大的异程空调水系统的安全正常运行得到保证。至今为止尚未发现由于水力失调而引起的“租户投诉”,从目前情况看来,新东安市场工程中使用动态平衡阀是成功的。几种BCHP技术及其能源利用效率的简要分析摘要: BCHP是能

14、量梯级综合利用的技术,对于解决我国面临的环境、能源问题有重要作用。本文对BCHP与传统空调用能方式的优缺点进行了分析,讨论了现有技术条件下几种BCHP技术的性能和特点,对基于微型燃气轮机和燃气内燃机的BCHP技术进行了分析,结果表明,在目前的技术水平下,当”以热定电”时,燃气内燃机方案较微燃机方案的一次能耗要低。 关键词: BCHP 微型燃气轮机 燃气内燃机 以热定电1 引言能源、环境问题是中国实现可持续发展战略所面临的重大挑战之一,应对这一挑战,需要各行各业密切协作,在各自的领域里作出巨大努力,空调制冷业也不能例外。事实上近年来空调制冷业的发展,正在造成我国乃至全球能源、环境危机:空调用电不

15、仅已成为城市能源消费最多的领域之一,还在夏季造成电网尖峰负荷,致使电力供应出现紧张局势;而空调在全球的使用也直接、间接地造成诸如大气臭氧层破坏,温室气体排放,城市热岛1等环境问题。因此,解决能源、环境问题,空调制冷行业有着不可推卸的责任,理应有所作为和贡献。提高设备性能虽然是解决问题的一个重要方面,但在空调使用飞速增长的中国,仅仅这样还远不够,必须从提高整个能源系统效率的角度出发,研究提高空调系统用能的高效化、清洁化,有效降低空调制冷能耗,减少环境污染,这是一个不可忽视的领域1,2,而BCHP作为一种能量梯级综合利用的技术,可以在这方面发挥重要作用1,2,3,本文就几种BCHP技术的能效作一初

16、步分析。2 BCHP的概念及其优越性BCHP即楼宇冷热电联产,是Building Cooling, Heating and Power的缩写,其原理是:燃料(油、气等)先经热功或电化学过程转换为电力供建筑物使用,燃料发电后的余热则用于建筑物供热、空调等,如图1所示。而在传统的以电力为能源的空调系统中,高品质的能源在中国目前最主要的部份是煤首先以较低的效率被转换为“清洁的”二次能源电力,经输配电设施到建筑物,再经制冷制热设备转换为低品位的空调冷热源通常是冷水或热水,在此过程中能量不仅在质上贬值了高品位的能量被转换成了低品位的空调冷热水,且数量上也“减少了”:大部份排热因远离用户而作为废热与NOx

17、、SO2、粉尘等污染物一起被排入大气,造成环境污染,如图2所示。比较上面两种空调用能模式可见,BCHP的用能方式具有诸多优点:用能合理,实现了能量的梯级利用,减少了能量转化和利用过程中的不可逆损失;高效,燃料作功后的余热也得到充份利用;清洁,可使用天然气等清洁燃料;环保,燃气内燃机、燃气轮机、燃料电池均有低排放特点;分布式现场发电,提高供电可靠性。在当今中国,空调用电持续增加,而污染严重的矿物燃料煤又占能源消耗绝对多数比例,为缓解环境、能源问题,国家已启动了一系列天然气工程,预计未来天然气在能源消费中所占比例将有较大幅度提高。但我国是一个人均能源、资源稀少的国家,已探明天然气储量并不能满足国内

18、能源需求,因此,应当尽可能高效、经济地使用,如BCHP,CCHP,DHC等等,使之在解决人口密集的城市的能源、环境问题方面有效发挥作用。3 几种BCHP技术3.1 BCHP的系统构成根据其功能,BCHP系统可分为三个子系统:燃料电力转换及接入设备、空调冷热源热备、包括空气处理末端的空调系统。各子系统均有多种技术方案,各有特点。3.2 几种 BCHP技术方案的性能特点3.2.1 微型燃气轮机余热溴化锂机组方案此方案中,微型燃气轮机(出力300kW以下)发电后的余热被直接用以驱动吸收式制冷机,制冷量不足时可补燃以增加冷机出力。目前小型燃机发电效率在30以下,国外有数家公司有商品化机组,国内也已开始

19、投入力量进行研发。吸收式机组国内外均有生产厂家。此方案系统较简单,且不用氟利昂制冷剂,与建筑用能匹配也较容易。3.2.2 燃气内燃机余热投入型溴化锂机组方案在此方案中内燃机发电后的余热先进行回收,然后被导入直燃机用以预热溶液,减少燃料消耗量。燃气内燃机特别是带增压中冷的机组发电效率较高,目前在30-42间,依机组容量而异。冷(热)负荷较低时,也可仅以排热驱动制冷机。3.2.3 高温燃料电池余热溴化锂机组方案燃料电池是将燃料化学能直接转化为电能的装置,不受卡诺定律的限制,有很高的发电效率(50-79)。SOFC(固体氧化物燃料电池)和MCFC(熔融碳酸盐燃料电池)可直接以天然气作燃料发电4,不仅

20、发电效率高,且排热温度高,可达750,用以驱动吸收式制冷机,可获得较高的能效比。此方案因发电效率高,排热相应较少,也需要补燃才可提供足够冷量。3.2.4 燃气内燃发电机压缩式制冷这是一个无吸收式制冷技术的方案。燃气机除用以发电外,还可用以直接驱动蒸汽压缩式制冷机或热泵,也可以发电后驱动电动制冷机组,依建筑物需要而定。燃气机的余热可作各种用途,包括用于除湿干燥,这可以提高制冷机出水温度,使制冷机组能效比大幅提高;在热泵应用中则可以提高制热量,使之在外界环境温度下降时仍能维持一定的制热量。因燃气机热效率较高,这个方案的一次能利用效率也是较高的。除以上方案外,还可能有其它方案的组合,而其它技术如PA

21、FC(磷酸型燃料电池)、PEMFC(质子交换膜燃料电池)也是合适的BCHP动力设备,在此不一一述及。下表列出了国内外知名厂家如康明斯,卡特彼勒,宝曼等的发电机组所能达到的性能。由表可见,不同产品发电效率、余热品位(温度)相差较大,要分析与其相应的BCHP的能效,只有火用效率才是合理的指标1,但这在计算上有些不便,为使分析可行,本文将在一定的热(冷)、电负荷下进行不同方案的一次能消耗的分析比较。表1.几种动力转换设备的性能参数 项目参数内燃机外燃机微燃机*SOFC发电效率32-383015202550-60高温余热温度()520/550/700制冷系数*1.0/1.0/1.25低温余热温度()9

22、050/9595/制冷系数*0.75/0.80.8/*理论估计值,根据直燃机高发温度160度、COP较高值为1.35推算得到。*某公司热水型溴冷机数据。*见Bowman 公司产品介绍。4 两种BCHP技术的能效分析鉴于微型燃气轮机和燃气内燃机在目前是较成熟的技术,因此本文着重讨论基于这两种技术的BCHP技术:方案1 和方案4。设有一建筑物,其冷负荷为Qc,自发电负荷为W。则依方案1的能量转换方式可得:上式中,吸收式制冷机的性能系数;t燃气轮机发电效率;吸收式制冷机补燃功率。设补燃功率制冷量为总冷负荷的x倍,即,则设燃气内燃机发电效率为e,压缩式制冷机性能系数为,不考虑内燃机余热回收,则方案1的

23、一次能消耗量及方案4的一次能消耗量分别为由于关于补燃的溴冷机的性能参数比较少,为便于讨论,现假设x=0,即不考虑补燃,建筑物冷负荷全部由燃气轮机余热满足,这实际上是”以热定电”。以目前蒸汽压缩冷水机组的技术水平,高水平的螺杆机COPc可达5.2,离心机则可达7.0,这里取5.2。燃气内燃发电机效率取35%,代入表1的其它相关参数可得各方案的PE值,如表2所示,这里还未计入内燃机的可利用排热。由表2可见,在不补燃、不计入内燃机可利用排热的条件下,仅当微燃机效率大于25时,方案2.2.4的一次能耗才较方案2.2.1 为低,但由于此时余热温度较低,制冷性能系数低,为满足冷负荷要求,发电功率就将超出建

24、筑自身负荷,需要向电网售电,而这将遇到很大阻力;此外若将内燃机的排热用于空调制冷,如干燥除湿等,则方案2.2.4的一次能耗仍将低于方案2.2.1,将另文进行分析讨论。表2. 两种方案的一次能耗比较 方案PE值方案2.2.16.67W5W4W方案2.2.45.97W4.6W4.18W5 结束语BCHP是能量梯级利用的新型能源、环境技术,其技术仍在不断发展,在目前及可预见的将来,有多种技术方案可供选择,其中基于内燃机的BCHP技术在某些情况下具有较高的一次能效率,且目前内燃机远较微燃机廉价,未来内燃机效率更将高达50(见美国能源部网站),因此可以预计将有更好的技术经济性能。看来,只有在准确地预计建筑物电、热负荷的基础上,在可行的技术条件下结合能源价格和政策进行综合优化才能得到技术、经济均为最佳的BCHP技术方案。参考文献

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号