人教版八下数学第十八章小结与复习.ppt

上传人:牧羊曲112 文档编号:5199421 上传时间:2023-06-13 格式:PPT 页数:33 大小:739KB
返回 下载 相关 举报
人教版八下数学第十八章小结与复习.ppt_第1页
第1页 / 共33页
人教版八下数学第十八章小结与复习.ppt_第2页
第2页 / 共33页
人教版八下数学第十八章小结与复习.ppt_第3页
第3页 / 共33页
人教版八下数学第十八章小结与复习.ppt_第4页
第4页 / 共33页
人教版八下数学第十八章小结与复习.ppt_第5页
第5页 / 共33页
点击查看更多>>
资源描述

《人教版八下数学第十八章小结与复习.ppt》由会员分享,可在线阅读,更多相关《人教版八下数学第十八章小结与复习.ppt(33页珍藏版)》请在三一办公上搜索。

1、小结与复习,第十八章 平行四边形,学练优八年级数学下(RJ)教学课件,要点梳理,考点讲练,课堂小结,课后作业,一、几种特殊四边形的性质,对边平行且相等,对边平行且相等,对边平行且四边相等,对边平行且四边相等,对角相等,四个角都是直角,对角相等,四个角都是直角,互相平分,互相平分且相等,互相垂直平分且相等,每一条对角线平分一组对角,轴对称图形,轴对称图形,轴对称图形,互相垂直且平分,每一条对角线平分一组对角,二、几种特殊四边形的常用判定方法:,1.定义:两组对边分别平行 2.两组对边分别相等 3.两组对角分别相等 4.对角线互相平分5.一组对边平行且相等,1.定义:有一个角是直角的平行四边形 2

2、.对角线相等的平行四边形3.有三个角是直角的四边形,1.定义:一组邻边相等的平行四边形;2.对角线互相垂直的平行四边形,3.四条边都相等的四边形,1.定义:一组邻边相等且有一个角是直角的平行四边形2.有一组邻边相等的矩形 3.有一个角是直角的菱形,5种判定方法,三个角是直角,四条边相等,一个角是直角,或对角线相等,一组邻边相等,或对角线垂直,一组邻边相等,或对角线垂直,一个角是直角,或对角线相等,一个角是直角且一组邻边相等,三、平行四边形、矩形、菱形、正方形之间的关系,四、其他重要概念及性质,1.两条平行线之间的距离:,2.三角形的中位线定理:,两条平行线中,一条直线上任意一点到另一条直线的距

3、离叫做两条平行线之间的距离.,三角形的中位线平行于第三边,并且等于第三边的一半.,3.直角三角形斜边上的中线:,直角三角形斜边上的中线等于斜边的一半.,考点讲练,例1 如图,在直角梯形ABCD中,ADBC,B90,AGCD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.(1)求证:四边形DEGF是平行四边形;(2)如果点G是BC的中点,且BC12,DC10,求 四边形AGCD的面积,解:(1)AGDC,ADBC,四边形AGCD是平行四边形,AGDC.,E、F分别为AG、DC的中点,GE AG,DF DC,即GEDF,GEDF,四边形DEGF是平行四边形.(2)点G是BC的中点,B

4、C12,BGCG BC6.四边形AGCD是平行四边形,DC10,AGDC10,在RtABG中,根据勾股定理得AB8,四边形AGCD的面积为6848.,例2 在ABC中,AB=AC,点D在边BC所在的直线上,过点D作DFAC交直线AB于点F,DEAB交直线AC于点E(1)当点D在边BC上时,如图,求证:DE+DF=AC,证明:DFAC,DEAB,四边形AFDE是平行四边形AF=DE.DFAC,FDB=C,又AB=AC,B=C,FDB=B,DF=BF,DE+DF=AF+BF=AB=AC.,(2)当点D在边BC的延长线上时,如图;当点D在边BC的反向延长线上时,如图,请分别写出图、图中DE,DF,A

5、C之间的数量关系,不需要证明(3)若AC=6,DE=4,求DF的值,解:(2)图中:AC+DE=DF 图中:AC+DF=DE(3)当如图的情况,DF=AC-DE=6-4=2;当如图的情况,DF=AC+DE=6+4=10,2.如图,在ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,则BOC的周长是()A45cm B59cm C62cm D90cm,B,1.如图,在ABCD中,ODA=90,AC=10cm,BD=6cm,则AD的长为()A4cm B5cm C6cm D8cm,A,3.如图是某公交汽车挡风玻璃的雨刮器,其工作原理如图雨刷EFAD,垂足为A,AB=

6、CD且AD=BC,这样能使雨刷EF在运动时,始终垂直于玻璃窗下沿BC,请证明这一结论,证明:AB=CD,AD=BC,四边形ABCD是平行四边形,ADBC.又EFAD,EFBC,图,图,例3 如图,在ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高(1)求证:四边形ADEF是平行四边形;(2)求证:DHF=DEF,证明:(1)点D,E,F分别是AB,BC,CA的中点,DE、EF都是ABC的中位线,EFAB,DEAC,四边形ADEF是平行四边形.,(2)四边形ADEF是平行四边形,DEF=BAC,D,F分别是AB,CA的中点,AH是边BC上的高,DH=AD,FH=AF,DAH

7、=DHA,FAH=FHA,DAH+FAH=BAC,DHA+FHA=DHF,DHF=BAC,DHF=DEF,例4 如图,在RtABC中,ACB=90,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC若AB=12,求EF的长,解:连接CD,点D,E分别是边AB,AC的中点,DEBC,DE=BC,DC=AB.CF=BC,DE FC,DE=FC,四边形DEFC是平行四边形,DC=EF,EF=AB=6,5.如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=4m,A=30,则DE等于()A1m B2m C3m D4m,A,4.如图,等边三角形ABC中,点D

8、,E分别为AB,AC的中点,则DEC的度数为()A150 B120 C60 D30,B,6.如图,在ABC中,CAB=90,DE、DF是ABC的中位线,连接EF、AD,求证:EF=AD,证明:DE,DF是ABC的中位线,DEAB,DFAC,四边形AEDF是平行四边形,又BAC=90,平行四边形AEDF是矩形,EF=AD,例5 如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AEBD,过点D作EDAC,两线相交于点E求证:四边形AODE是菱形;,证明:AEBD,EDAC,四边形AODE是平行四边形.四边形ABCD是矩形,AC=BD,OA=OC=AC,OB=OD=BD,OA=OC=OD

9、,四边形AODE是菱形.,【变式题】如图,O是菱形ABCD对角线的交点,作BEAC,CEBD,BE、CE交于点E,四边形CEBO是矩形吗?说出你的理由.,D,A,B,C,E,O,解:四边形CEBO是矩形.理由如下:已知四边形ABCD是菱形.ACBD.BOC=90.BEAC,CEBD,四边形CEBO是平行四边形.四边形CEBO是矩形.,例6 如图,已知在四边形ABFC中,ACB90,BC的垂直平分线EF交BC于点D,交AB于点E,且CFAE;(1)试判断四边形BECF是什么四边形?并说明理由;(2)当A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论,解:(1)四边形BECF是

10、菱形理由如下:EF垂直平分BC,BFFC,BEEC,31.ACB90,3490,1290,24,,ECAE,BEAE.CFAE,BEECCFBF,四边形BECF是菱形;(2)当A45时,菱形BECF是正方形证明如下:A45,ACB90,CBA45,EBF2CBA90,菱形BECF是正方形,正方形的判定方法:先判定四边形是矩形,再判定这个矩形有一组邻边相等;先判定四边形是菱形,再判定这个矩形有一个角为直角;还可以先判定四边形是平行四边形,再用或进行判定,例7 如图,ABC中,点O是AC上的一动点,过点O作直线MNBC,设MN交BCA的平分线于点E,交BCA的外角ACG的平分线于点F,连接AE、A

11、F.(1)求证:ECF90;(2)当点O运动到何处时,四边形AECF是矩形?请 说明理由;,(1)证明:CE平分BCO,CF平分GCO,OCEBCE,OCFGCF,ECF 18090.,(2)解:当点O运动到AC的中点时,四边形AECF是矩形理由如下:MNBC,OECBCE,OFCGCF.又CE平分BCO,CF平分GCO,OCEBCE,OCFGCF,OCEOEC,OCFOFC,EOCO,FOCO,OEOF.又当点O运动到AC的中点时,AOCO,四边形AECF是平行四边形.ECF90,四边形AECF是矩形.,解:当点O运动到AC的中点时,且满足ACB为直角时,四边形AECF是正方形由(2)知当点

12、O运动到AC的中点时,四边形AECF 是矩形,已知MNBC,当ACB90,则AOFCOECOFAOE90,即ACEF,四边形AECF是正方形,(3)在(2)的条件下,ABC应该满足什么条件时,四边形AECF为正方形,7.如图,两个含有30角的完全相同的三角板ABC和DEF沿直线FC滑动,下列说法错误的是()A四边形ACDF是平行四边形 B当点E为BC中点时,四边形ACDF是矩形 C当点B与点E重合时,四边形ACDF是菱形 D四边形ACDF不可能是正方形,B,8.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为_,30,9.如图,四边形ABCD是边长为2的正方形,点G是

13、BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,12,34.(1)证明:ABEDAF;(2)若AGB30,求EF的长,(1)证明:四边形ABCD是正方形,ABAD.在ABE和DAF中,ABEDAF.,(2)解:四边形ABCD是正方形,1490.34,1390,AFD90.在正方形ABCD中,ADBC,1AGB30.在RtADF中,AFD90,AD2,AF,DF1.由(1)得ABEDAF,AEDF1,EFAFAE 1.,例8 在一个平行四边形中,若一个角的平分线把一条边分成长是2cm和3cm的两条线段,求该平行四边形的周长是多少.,解:如图,在平行四边形ABCD中,AB=CD,

14、AD=BC,ADBC,AEB=CBE又ABE=CBE,ABE=AEB,AB=AE(1)当AE=2时,则平行四边形的周长=2(2+5)=14(2)当AE=3时,则平行四边形的周长=2(3+5)=16,分类讨论思想,考点四 本章解题思想方法,平行四边形的性质与判定中要是出现角平分线,常与等腰三角形的性质和判定结合起来考查,当边指向不明时需要分类讨论,常见的的模型如下:,例9 如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长,方程思想,解:(1)由题意得AF=AD=10cm,在RtABF中,AB=8,BF=6cm,FC=BC-BF=1

15、0-6=4cm(2)由题意可得EF=DE,可设DE的长为x,在RtEFC中,(8-x)2+42=x2,解得x=5,即EF的长为5cm,例10 如图,平行四边形ABCD中,AC、BD为对角线,其交点为O,若BC=6,BC边上的高为4,试求阴影部分的面积,转化思想,解:四边形ABCD为平行四边形,OA=OC,OB=OD.ABCD,EAO=HCO.又 AOECOH,AEOCHO(ASA),同理可得OAQOCG,OPDOFB,S阴影=SBCD,则SBCD=S平行四边形ABCD=64=12,E,H,Q,G,F,P,四边形,课堂小结,矩形,菱形,正方形,平行四边形,两组对边平行,一个角是直角,一组邻边相等,一组邻边相等,一个角是直角,一个角是直角且一组邻边相等,更多精彩视频内容,敬请关注微信公众号:我是好教师,微信扫描二维码下载更多资源,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号