全等三角形-小结与复习.ppt

上传人:小飞机 文档编号:5234725 上传时间:2023-06-16 格式:PPT 页数:32 大小:537.50KB
返回 下载 相关 举报
全等三角形-小结与复习.ppt_第1页
第1页 / 共32页
全等三角形-小结与复习.ppt_第2页
第2页 / 共32页
全等三角形-小结与复习.ppt_第3页
第3页 / 共32页
全等三角形-小结与复习.ppt_第4页
第4页 / 共32页
全等三角形-小结与复习.ppt_第5页
第5页 / 共32页
点击查看更多>>
资源描述

《全等三角形-小结与复习.ppt》由会员分享,可在线阅读,更多相关《全等三角形-小结与复习.ppt(32页珍藏版)》请在三一办公上搜索。

1、小结与复习,第十二章 全等三角形,能够完全重合的两个图形叫全等图形,能够完全重合的两个三角形叫全等三角形.,要点梳理,一、全等三角形的性质,B,C,E,F,其中点A和,点B和,点C和_ _是对应顶点.AB和,BC和,AC和 是对应边.A和,B和,C和 是对应角.,A,D,点D,点E,点F,DE,EF,DF,D,E,F,A,B,C,D,E,F,性质:,全等三角形的对应边相等,对应角相等.,如图:ABCDEF,AB=DE,BC=EF,AC=DF(),A=D,B=E,C=F().,全等三角形的对应边相等,全等三角形的对应角相等,应用格式:,1.三边对应相等的两个三角形全等(可以简写为“边边边”或“S

2、SS”).,在ABC和 DEF中,,ABC DEF.(SSS),用符号语言表达为:,二、三角形全等的判定方法,用符号语言表达为:,在ABC与DEF中,ABCDEF.(SAS),2.两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).,F,E,D,C,B,A,在ABC和DEF中,,ABCDEF.(ASA),3.有两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).,用符号语言表达为:,F,E,D,C,B,A,4.有两角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).,5.斜边和一条直角边对应相等的两个直角三角形全等

3、.简写成“斜边、直角边”或“HL”.,A,B,C,D,E,F,注意:对应相等.“HL”仅适用直角三角形,书写格式应为:在Rt ABC 和Rt DEF中,AB=DE,AC=DF,RtABCRtDEF(HL),角的平分线的性质,OP平分AOB,PDOA于D,PEOB于E,PD=PE,OP平分AOB,PD=PE,PDOA于D,PEOB于E,角的平分线的判定,三、角平分线的性质与判定,考点讲练,例1 如图,已知ACEDBFCE=BF,AE=DF,AD=8,BC=2(1)求AC的长度;(2)试说明CEBF,解:(1)ACEDBF,AC=BD,则AB=DC,BC=2,2AB+2=8,AB=3,AC=3+2

4、=5;(2)ACEDBF,ECA=FBD,CEBF,两个全等三角形的长边与长边,短边与短边分别是对应边,大角与大角,小角与小角分别是对应角.有对顶角的,两个对顶角一定为一对对应角.有公共边的,公共边一定是对应边.有公共角的,公共角一定是对应角.,1.如图所示,ABDACD,BAC=90(1)求B;(2)判断AD与BC的位置关系,并说明理由,解:(1)ABDACD,B=C,又BAC=90,B=C=45;(2)ADBC理由:ABDACD,BDA=CDA,BDA+CDA=180,BDA=CDA=90,ADBC,例2 已知,ABCDCB,ACB DBC,求证:ABCDCB,ABCDCB(已知),BCC

5、B(公共边),ACBDBC(已知),,证明:,在ABC和DCB中,,ABCDCB(ASA).,【分析】运用“两角和它们的夹边对应相等两个三角形全等”进行判定,2.已知ABC和DEF,下列条件中,不能保证ABC和DEF全等的是()A.AB=DE,AC=DF,BC=EF B.A=D,B=E,AC=DFC.AB=DE,AC=DF,A=D D.AB=DE,BC=EF,C=F,D,3.如图所示,AB与CD相交于点O,A=B,OA=OB 添加条件,所以 AOCBOD 理由是.,C=D,或AOC=BOD,AAS,或ASA,例3 如图,在ABC中,AD平分BAC,CEAD于点G,交AB于点E,EFBC交AC于

6、点F,求证:DEC=FEC.,【分析】,欲证DEC=FEC,由平行线的性质转化为证明DEC=DCE,只需要证明DEG DCG.,证明:CEAD,AGE=AGC=90.,在AGE和AGC中,,AGE AGC(ASA),,GE=GC.,AD平分BAC,EAG=CAG,.,在DGE和DGC中,,DGE DGC(SAS).,DEG=DCG.,EF/BC,FEC=ECD,,DEG=FEC.,利用全等三角形证明角相等,首先要找到两个角所在的两个三角形,看它们全等的条件够不够;有时会用到等角转换,等角转换的途径很多,如:余角,补角的性质、平行线的性质等,必要时要想到添加辅助线.,4.如图,OBAB,OCAC

7、,垂足为B,C,OB=OC,BAO=CAO吗?为什么?,解:BAO=CAO,,理由:OBAB,OCAC,B=C=90.在RtABO和RtACO中,OB=OC,AO=AO,RtABORtACO,(HL)BAO=CAO.,例4 如图,两根长均为12米的绳子一端系在旗杆上,旗杆与地面垂直,另一端分别固定在地面上的木桩上,两根木桩离旗杆底部的距离相等吗?,【分析】将本题中的实际问题转化为数学问题就是证明BD=CD.由已知条件可知AB=AC,ADBC.,解:相等,理由如下:,ADBC,,ADB=ADC=90.,在RtADB和RtADC中,,RtADB RtADC(HL).,BD=CD.,利用全等三角形可

8、以测量一些不易测量的距离和长度,还可对某些因素作出判断,一般采用以下步骤:(1)先明确实际问题;(2)根据实际抽象出几何图形;(3)经过分析,找出证明途径;(4)书写证明过程.,5.如图,有一湖的湖岸在A、B之间呈一段圆弧状,A、B间的距离不能直接测得你能用已学过的知识或方法设计测量方案,求出A、B间的距离吗?,解:要测量A、B间的距离,可用如下方法:过点B作AB的垂线BF,在BF上取两点C、D,使CD=BC,再作出BF的垂线DE,使A、C、E在一条直线上,ACB=ECD,CB=CD,ABC=EDC,EDCABC(ASA)DE=BA答:测出DE的长就是A、B之间的距离,C,D,E,例5 如图,

9、1=2,点P为BN上的一点,PCB+BAP=180,求证:PA=PC.,【分析】由角平分线的性质易想到过点P向ABC的两边作垂线段PE、PF,构造角平分线的基本图形.,【证明】过点P作PEBA,PFBC,垂足分别为E,F.,1=2,PEBA,PFBC,垂足分别为E,F.,PE=PF,PEA=PFC=90.,PCB+BAP=180,又BAP+EAP=180.,EAP=PCB.,在APE和CPF中,,APE CPF(AAS),,AP=CP.,【证法2思路分析】由角是轴对称图形,其对称轴是角平分线所在的直线,所以可想到构造轴对称图形.方法是在BC上截取BD=AB,连接PD(如图).则有PABPDB,

10、再证PDC是等腰三角形即可获证.,B,证明过程请同学们自行完成!,【归纳拓展】角的平分线的性质是证明线段相等的常用方法.应用时要依托全等三角形发挥作用.作辅助线有两种思路,一种作垂线段构造角平分线性质基本图;另一种是构造轴对称图形.,6.如图,1=2,点P为BN上的一点,PA=PC,求证:PCB+BAP=180.,【证明】过点P作PEBA,PFBC,垂足分别为E,F.,1=2,PEBA,PFBC,垂足分别为E,F.,PE=PF,PEA=PFC=90.,在RtAPE和RtCPF中,,RtPAE RtPCF(HL).,EAP=FCP.,BAP+EAP=180,,PCB+BAP=180.,想一想:本题如果不给图,条件不变,请问PCB与PAB有怎样的数量关系呢?,全等三角形,性质,基本性质和其他重要性质,判定,判定方法基本思路,作用,是证明两条线段相等和角相等的常用方法,寻找现有条件(包括图中隐含条件),选定判定方法证明准备条件,角的平分线的性质定理,角的平分线的判定定理,证明两条线段相等,证明角相等,辅助线添加方法,课堂小结,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号