数值分析第五版答案.docx

上传人:牧羊曲112 文档编号:5306020 上传时间:2023-06-24 格式:DOCX 页数:72 大小:247.15KB
返回 下载 相关 举报
数值分析第五版答案.docx_第1页
第1页 / 共72页
数值分析第五版答案.docx_第2页
第2页 / 共72页
数值分析第五版答案.docx_第3页
第3页 / 共72页
数值分析第五版答案.docx_第4页
第4页 / 共72页
数值分析第五版答案.docx_第5页
第5页 / 共72页
亲,该文档总共72页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《数值分析第五版答案.docx》由会员分享,可在线阅读,更多相关《数值分析第五版答案.docx(72页珍藏版)》请在三一办公上搜索。

1、数值分析第五版答案第一章绪论1. 设X 0,x的相对误差为8 ,求lnx的误差。e * x * x解:近似值X *的相对误差为8 = e* = = r X *X *而 ln x 的误差为 e (ln x *)= ln x * In x e *X*进而有s(lnx*) -82. 设x的相对误差为2%,求xn的相对误差。xf (x).解:设f (x) = xn,则函数的条件数为C =1%1 pf (x)x - nxni .又 f (x) = nxni,C =11= np n又: s (x*)n) C (x*)且 e. (x*)为 2* r.s (x*)n) - 0.02n3. 下列各数都是经过四舍

2、五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:x*= 1.1021,x*= 0.031, x*= 385.6, x* =56.430 ,x*= 7x 1.0.12345解:x;= 1.1021是五位有效数字;x; = 0.031是二位有效数字;x; = 385.6是四位有效数字;x; = 56.430是五位有效数字;x* = 7 x 1.0.是二位有效数字。 54. 利用公式(2.3)求下列各近似值的误差限:(1) x* + x* + x*,(2) x*x*x*,(3) x*/x*.1241 2 324其中x*,x*,x*,x*均为第3题所给的数。 1234解:

3、8(X*) = X10-41 28(X*) = 4x1032 28(X*) = xlO-13 2(*) = X10-34 28(X*) = xlO-15 2(1)E(X* + X* + X*) 124二8(X*) + (X*) + (*)124X 104 + X 103 + X 103222= 1.05x10-3(2)e(x*x*x*)1 2 3(%*)+ jrx* 8(x*)+ xw 8(x*)1 11= |1.1021x0.031|x-x10-i + |0.031x385.6|x-x10-4 + |1.1021x385.6|x-x10-32 22q 0.215 (3)8 3*/x*)24X

4、* (*)+ x* 8(*)2X*40.031x1x10-3+ 56.430 xlxl0-3_2256.430x56.430= 10-55计算球体积要使相对误差限为1,问度量半径R时允许的相对误差限是多少?4解:球体体积为U = R兀R3则何种函数的条件数为. 8 (V*)8 (7?*) = 38 (7?*)rp rr又甲*) = 1r 故度量半径R时允许的相对误差限为8 r(R*) = 3 X1 0.336.设Y0 = 28,按递推公式Y = Y 1 -100 J783(n=1,2,.)计算到、。若取783浇27.982 (5位有效数字),试问计算、将有多大误差?解:Y=Y-1 - *海%

5、= Y99-100、标Y = Y -上;7839998 1 00Y = Y -上 7839897 1 00Y = Y - 783 10 100依次代入后,有匕0= Y-100 x总应 即00 =-V783,若取7783 牝 27.982, . 00 = Y- 27.982. 8 (Y* ) = 8 (Y) + 8 (27.982) =1 x 10-3 10002Y00的误差限为2X10-3。7.求方程x2 -56x +1 = 0的两个根,使它至少具有4位有效数字(4783 = 27.982 )。解:x2 - 56x +1 = 0 , 故方程的根应为x12=28 J783故 气=28 + 妫3

6、注 28 + 27.982 = 55.982 x1具有5位有效数字 x2具有5位有效数字x = 28783 =1=:228 +783128 + 27.982155.982总 0.0178638.当N充分大时,怎样求n+1dx1 + x 2解 j N+1 - dx = arctan(N +1) - arctan NN 1 + x 2设 a = arctan(N +1), P = arctan N 。则 tan a = N + 1,tan P = N.尸+1-+1_- dx=a P=arctan(tan(a P)tan a tan P=arctan-1 + tan a tan PN +1 N =a

7、rctan1 + (N + 1)N .1=arctanN 2 + N +19.正方形的边长大约为了 100cm,应怎样测量才能使其面积误差不超过1。秫2 ?解:正方形的面积函数为A( x) = x 2当 x* = 100 时,若 (A*) 1,则 (x*) 0当t *增加时,S *的绝对误差增加 ( S *) ID 帛_ gt2 (t*)=13、g(t*)2/Ct*)=2当t *增加时, (t*)保持不变,则S *的相对误差减少。11.序列b 满足递推关系y =10-1(n=i,2,), nnn-1若y=J2 1.41 (三位有效数字),计算到时误差有多大?这个计算过程稳定吗?解:y = t2

8、 1.41 0 (y *) = 2x 10-2又 y =10 yn1 -11 =10 y0-1. V =10 V又 y2 = 10 y1 -1=10 V. (y *) = 102 ( y *)20. (七。*) = 1010 (y)=1010 x 若通过一 计算y值,则 (点 +1)6 x 10-22=1 x 1082计算到,时误差为2 x108,这个计算过程不稳定。12.计算f =(技-1)6,取点 5.4,利用下列等式计算,哪一个得到的结果最好?-J, (3-2克)3,,G;2 +1)6(3 + 22)3解:设 y = (x -1)6,若x =寸2,x* = 1.4,则(x*) = x 1

9、0-1。2(*) = 6x s() 3* +1)76 z 、二7 浮3)3+1)7=2.53严(尤*)若通过(3-22)3计算y值,则s(y*) =-3x 2x (3-2尤*)2 s(x*)6.y* 心*)3 - 2x*.30y*8(x*)1若通过计算y值,则(y*) = -3x:、s()(3 + 2x*)4/ 1 z 、= 6xy*( x*)(3 + 2x*)7=1.0345y*(x*)计算后得到的结果最好。13. f3) = ln(x序二I),求f(30)的值。若开平方用6位函数表, 大?若改用另一等价公式。1大3-1) = -ln(v +五2 1)计算,求对数时误差有多大?解J(x)=l

10、n(x-x2-l)? .(30) 二 111(30-/而)设 i/ = V899,y = f(30) 则 * = 29.9833.(*) = ;xl04故问求对数时误差有多( U * )s( * mb*1 /、=( U* )0.0167就3x10-3若改用等价公式.ln( x v x2 1) = ln( x + % x2 1)则 f (30) =ln(30 +、899)此时,(y * ) = 1情(u *)30 + u *1 ,八8( U * ) 59.9833q8x10-7第二章插值法1.当x = 1,1,2时,f (x) = 0, 3,4,求f (x)的二次插值多项式。解:x = 1, x

11、 = 1, x = 2,f (x ) = 0, f (x ) = 3, f (x ) = 4;012l (x) = ,(x一x1)(x y =-1(x + 1)(x 2) 0(x x )(x x )2l (x) = (x-x0)(xx2) = 1(x- 1)(x-2)1(x x )(x x ) 61 (x) = - M- x = 1(x 1)(x + 1)2 (x x )(x x ) 3则二次拉格朗日插值多项式为L (x) = y l (x)2k kk=0=3/ (x) + 4/ (x)1, 4=(x - 1)(x 2) + (x - 1)(x +1)5 37=x2 + x 6 232.给出f

12、 (x) = Inx的数值表X0.40.50.60.70.8lnx-0.916291-0.693147-0.510826-0.356675-0.223144用线性插值及二次插值计算ln0.54的近似值。解:由表格知,x 0.4, x 0.5, x 0.6, x 0.7, x 0.8; f(x ) 0.916291, f (x ) -0.693147 f (x ) -0.510826, f (x ) -0.35667523f (x4) -0.223144若采用线性插值法计算ln0.54即f (0.54),则 0.5 0.54 0.6xl (x) * 10(x 0.6)1 x - xxx12( x

13、) = 10( x - 0.5)21L (x) f (x )1 (x) + f (x )1 (x)11 12 26.93147( x - 0.6) - 5.10826( x - 0.5)/. L (0.54) -0.6202186 -0.6202191若采用二次插值法计算ln0.54时,10( x)(x x f - 50(x - 0.5)(x - 0.6)(x - x )(x - x )1 (x) (x x0)( x x2) -100( x - 0.4)( x - 0.6) 1(x - x )(x - x )1 (x) - (x x0)(x x 50(x-0.4)(x-0.5)2 (x - x

14、 )(x - x )20 01 12 2L (x) f (x )1 (x) + f (x )1 (x) + f (x )1 (x) -50 x 0.916291( x - 0.5)( x - 0.6) + 69.3147( x - 0.4)( x - 0.6) - 0.510826 x 50( x - 0.4)( x - 0.5)L2(0.54) -0.61531984 -0.6153203.给全cosx,0 x 90的函数表,步长h = 1 = (1/60),若函数表具有5位有效数字,研究用线性插值求cos x近似值时的总误差界。解:求解cosx近似值时,误差可以分为两个部分,一方面,x是近

15、似值,具有5位有效数 字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数cosx的近似 值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综 合以上两方面的因素。当 0 x 90 时,令 f (x) = cos x1、1 兀 兀取 - x 、 + k +1 )xk+1- xk=8 (f *(x ) h (x- x + x - x )=8 ( f *(x )k总误差界为R = R(x) + R( x) =2(-cos g)(x - x )(x -v 1 X(x-x )(x -x) + 8(f *(x )2k k+1- 1 X (1 h)2 +8 (

16、f *(x )=1.06 X10-8 +1X10-52=0.50106 X10-54.设为互异节点,求证:0 = 0,h = (60) = 60 面=赤而o令 x = x0 + ih, i = 0,1,.,5400则 x = = 9054002当x xk, xi 时,线性插值多项式为L (x) = f (x ) _x + f (x )-h-1k x - xk+1 x 一 xkk+1k+1k插值余项为R (x) = |cos x-,1 .k+1-L1(x)| = 2f G)(x-x)(x +1)又一在建立函数表时,表中数据具有5位有效数字,且cosx e【0,1,故计算中有误差传播过程。.* (

17、f *(x = 2 X10-58 (Ek+1)x 一 x k+1 x+1- xkx 一 x k+1*k+1)+8(f *(x )(1)(x)三 xk (k = 0,1, ,n);j j j=0,n);(2) 2(x -x)kl (x)三 0(k = 0,1, jjj=0证明 (1)令 f (x) = xk若插值节点为x ., j = 0,n,则函数f (x)的n次插值多项式为L (x) = 2Xkl. (x)。j=0f (n+1)(松)插值余项为Rn(x) = f (x)-Ln(x) = (n + )! %+1(x)又 k n,f (n+1) (& ) = 0R (x) = 02 xkl (x

18、) = xk (k = 0,1, , n);jjj=0(2)2(x -x)kl (x) j j j=0=2 (2s,( - x) k-i)i(x)j=0 i=0=2C (-x)k-i (2 xil (x)i=0j=0又 0 i n由上题结论可知2 xkl (x) = xij jj=0原式=Y Ci (-x)k-ixik i=0=(x - x) k=0,.得证。5 设 f (x) e C2【a, b且 f (a) = f (b) = 0,求证:max | f (x) V 1 (b - a )2 max axb8解:令 x = a, x1 = b|f(x)|a xb以此为插值节点,则线性插值多项式

19、为x 一 x+ f (x )01 x - x0L (x) = f (x )M10 x0 - x1x - bx - a=f (a)一- + f (b)a - bx - a又 f (a) = f (b) = 0L1(x) = 01插值余项为火(x) = f (x) - Li(x) = 2 f (x)(x - xo)(x气) f (x) = 2 f (x)(x - x)(x -气) 又 |( x - x)(x - x |,2(x- xo) + (xi - x)j1, M=4(xi - xo)21小、=(b - a)24 max |f (x) 1(b - a)2 max |f(x)|axbaxb6.在

20、-4 x 4上给出f (x) = ex的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少?解:若插值节点为x , x和x ,则分段二次插值多项式的插值余项为 i-1 ii+1R (x) = 1 f (&)(x - x )(x - x)(x - x )23!i-1ii+1. R (x) 6(x- x, )(x- x,)(x- x ) max | f(x)|i -1i+1 -4x4设步长为h,即x = x - h,x = x + h i-1ii+1iLe4h3i63 瑚327R (x) e4 - -= h3 =若截断误差不超过10-6,则R 3

21、)| 10-6克一 e4h3 10-627. h 0.0065.7.若y 2n,求A4y 及 4yA 4 y = ( E -1)4 y41解:根据向前差分算子和中心差分算子的定义进行求解。 M-1)j| . E4-jy j=04+n- j=X(-1) j f 4 y j=0j= 8(-1) jf 4124- j. y j=05,= (2 -1)4 yn=yn=2n1(E - 2 )4( E -1)4 ynE -2 A 4 yn二 y 2n-2=2 n-28 .如果f (x)是m次多项式,记Af (x) = f (x + h) - f (x),证明f (x)的k阶差分Akf (x)(0 k m)

22、是m 一 k次多项式,并且Am+f (x) = 0 (l为正整数)。解:函数f (x)的Taylor展式为f (x + h) = f (x) + f(x)h + 1 f(x) h 2 + 二 f (m)(x) hm + 二f (m+1)(E ) hm+12 m!(m +1)!其中 E e (x,x + h)又f (x)是次数为m的多项式f (m+1) (提=0f (x) = f (x + h) f (x)=f(x)h + 2 f(x)h 2 + f (m) (x)hm m!.f (x)为m 1阶多项式 2f ( X) = ( f ( X). 2f (X)为m 2阶多项式依此过程递推,得 kf

23、(X)是m k次多项式. mf (x)是常数当l为正整数时, m+1 f ( X) = 09. 证明( fg ) = f g + g fk k k kk+1 k证明(f g ) = f g f g k kk+1 k+1k k=f g f g + f g f gk+1 k+1k k+1k k+1k k=g (f f )+ f (g g ) k+1 k+1k k k+1k=gk+包+f g=fk g+gk+包得证10. 证明习f g = f g f g 习g fk k n n 0 0k +1 kk=0k=0证明:由上题结论可知f g = (fg)g k kk kk+1 k点 fk Agkk =0=

24、 (A( fg ) g ) k kk+1 kk =0=云(f g )-云 g fk kk+1 kk=0k=0A (fg ) = f g - fg k kk+1 k+1 k kA( fkg)k =0二(fg - fg)+(fg - fg) + + (fg - f g )1 10 02 21 1n n n-1 n-1=f f0g 0以 f Ag = fg 一 fg 一云 g ,颂 k k n n 0 0k+1 kk=0k=0得证。11.证明习A2y = Ay -Ay j n 0j=0j+1Ayj)证明 E A 2 yj =( A yj=0j=0=(Ay - Ay ) + (Ay - Ay ) +=

25、Ay -Ay n 0得证。+ (Ay -Ay ) nn-112.若 f3) = a + ax + + aVxk证明:E k j=1j0,0 k n - 2;=4 一 一n-1,k = n 10Xn-1 + a Xn有n个不同实根x, x, , x证明: f有个不同实根气, xn且 f (x) = a + a x + axn-1 + a xn . f (x) = a (x 一 x )(x 一 x ) (x 一 x ) n12n令 s (x) = (x 一 x )(x 一 x ) (x 一 x ) n12nExk V xkj=乙jf(x ) a (x )而 s x) = (x 一 x )(x 一

26、x )(x 一 x ) + (x 一 x )(x 一 x )(x 一 x )n23n13n+ (x x )(x x )(x x ) sx ) = (x - x )(x - x ) (x - x )(x - x )(x - x )n j j 1 j 2jj-1jj+1j n令 g (x) = xk,g lx , x , , x =七1 2 n._,(x.)则 g lx ,x, ,x =X :x1 2 n._,(x.)Ex*1 l ,g Lx ,x , ,x/(x.) an1 2 n.Zj=1xkjf f(x ).10,0 k n - 2;I n-1, k = n 1l 0得证。13.证明n阶均差

27、有下列性质:(1) 若 F(x) = cf (x),则 F L0,x,x = cf L(2) 若F(x) = f (x) + g(x),则 FLx。,x-0, x,x =f 虬,x ;,x , ,x + g L ,x , 1 n01证明:(1)f lx , x , , x =Xf (x)-1 2 n(x x )(x x )(x x ) (x x )j= j 0 jj1jj+1j nF lx , x, ,x 口F1 2 n(x x )(xx)(x x )(xx )j =0j 0jj 1jj + 1j n=j=0cf ( xj)(x x ) (x x )(x x )(x x )j 0 jj1j j

28、+1 j n= c(j=0=cf、x得证。f (xj)(x x)(x x )(x x ) (x x ) j0jj 1jj + 1j n, xn (2)F (x) = f (x) + g (x).尸R0,,七(x x )(x x)(x x )(x x )gj=0( xj - x0)j= j 0 jj1jj+1j nf (xj) + g ( xj)g (xj)=f L: 0.,得证。+ 和 ,司7 )(x - x ) (x - x )(x - x ) (x - x ) j= j 0 j j-1 jj+1j n,x + g L。,,x 14. f(x) = x7 + x4 + 3x士 1,求F20,

29、21, ,27-及F2o,2i,28、解:f (x) = x 7 + x 4 + 3 x + 1则 f x0,x,x= f (n)(E) f x ,x,,x = Zl = E = 10177!7!f x ,x , yx = f :(,)= 00 188!15.证明两点三次埃尔米特插值余项是R (x) = f (4) ( )(x 一 x )2( x 一 x )2/4!, E E (x , x )3kk+1k k+1解:若 x G xk , kJ,且插值多项式满足条件H (x ) = f (x ), H (x ) = f (x )3 kk 3 kkH 3(xk+1)= f (xk J H 3(xk

30、+1)= Ek /插值余项(x ) = f ( x ) - H 3(x )由插值条件可知R (x= R (xk / = 0且 R(xk) = Rf( xk+i) = 0R (x)可写成 R (x) = g (x )(x-x/(x f+i)2其中g(x)是关于x的待定函数,现把x看成叫,上的一个固定点,作函数国)=f (t) - H 3(t) - g (x )(t-/-xk+1)2根据余项性质,有 (x ) = 0, (x ) = 0 kk+1中(x) = f (x) - H (x) - g (x)(x - x)2(x - x )2=f (x) - H 3( x) - R (x)k=03m) =

31、ff(t) 一 h(t) - g心x )(t 一x )2+2。一x )(t 一x )2 3kk+1k+1k R) = 0中(x+ 1) = 0由罗尔定理可知,存在&e (xk, x)和& e (x, xk+1),使V(& ) = 0,9(& ) = 0 12即9 (x)在xk, xk+1 上有四个互异零点。根据罗尔定理,9(t)在9 (t)的两个零点间至少有一个零点,故9 (t )在(xk xk+1)内至少有三个互异零点,依此类推,9 (4)(t)在(xk, xk+1)内至少有一个零点。记为 & e (xk, xk+1) 使9(&) = f (4)(&) -H (4)(&) -4!g(x) =

32、 03又 H 3(4) (t) = 0f (&)4!,(xk,xk+1)其中&依赖于xR(x) = f (& ) (x - x )2(x - x )24!kk+1分段三次埃尔米特插值时,若节点为xk(k = o,1,n,设步长为h,即x = x + kh,k = 0,1,n 在小区间x ,x 上R(X) = f ( (X - X )2(X - X )2 4!kk+i2I 夫 | = 1f(4)(& )|( X -X )2(X - X )-!-(x-x )2(x -x)2max f (x)4! kk +1a xb !(X-Xk +Xk + 1 -X4!2=L xh4 max f (x)4! 24

33、)22max f (x)a xba Xb名max|f384 ax)()21X - X X - X1010=(3 - 2 x) x 2P (x) = x(X -1)2P (X) = (X - 1)X2H (x) = (3 - 2x)x2 + (x - 1)x2 = -x3 + 2x2设 P(x) = H (x) + A(x - X )2 (x - X )2其中,A为待定常数P(2) = 1. P(x) = -X3 + 2X2 + Ax2(X - 1)2.A = 14从而 P(x) = X2(X 3)2417.设f (X) = 1/(1 + X2),在5 X 5上取n = 10 ,按等距节点求分段

34、线性插值函数Ih(X),计算各节点间中点处的I (X)与f (X)值,并估计误差。 h解:若 x = 5, x = 5则步长h = 1,x = X + ih, i = 0,1, ,10 f ( x)=在小区间Xi, Xi+1上分段线性插值函数为I (X) = f (X) + _2f (X ) h X 一 X i X 一 Xi+1ii+1i+1i/、 1、1=(X X)+ (X X )i+11 + X 2i 1 + X, 2当 X = 4.5 时,各节点间中点处的I (X)与f (X)的值为 hf ( x ) = 0.0471,七(x ) = 0.0486当 x = 3.5 时,f (x) =

35、0.0755, I.(x) = 0.0794 当 x = 2.5 时,f (x) = 0.1379, I. (x) = 0.1500当 x = 1.5 时,f (x) = 0.3077, I. (x) = 0.3500 当 x = 0.5 时,f (x) = 0.8000, I. (x) = 0.7500误差h 2max |f (x) I (x)| 云 max |f (&)|X XXi+1h8 -5X5又 f(X) = 土-2 x(1+ x 2)2f”(x)=24x - 24x 3(1+ x 2)4令 f( x) = 0得 f (x)的驻点为 xi,2=1 和 x3= 0严=2, f”(xJ

36、= 一2. max5VxV5f(x) v 418.求f (x) = x2在a,b上分段线性插值函数I (x),并估计误差。 h解:在区间a,b上,x = a,x = b,h = x x ,i = 0,1, ,n 1,0nii+1 ih = max h0i n1 f (x) = x 2二函数f在小区间xi,x用上分段线性插值函数为I (x) = f (x) + _2f (x ) h x x i x x i+1ii+1i+1i=x.2(x. - x) + x, 2(x x.)i误差为max |f(x) I (x)|smax|f(&)| h2 x. xxi+1h8 ab1f (x) = x2f (x

37、) = 2 x, f(x) = 2-.:.max I f (x) I (x)| axbh4.,、,/、 h 219.求f (x) = x4在a,b上分段埃尔米特插值,并估计误差。解:a, b区间上,x = a, x = b, h = x x , i = 0,1, , n 1, 0nii + 1i令 h = max h0in-1 1f 3) = x4, f(x) = 4 x 3函数f 在区间七,1上的分段埃尔米特插值函数为I (x) = ()2(1+2_2)f (x) h x - xx - x iii+1i+1i+(Z2)2(1+ 22)f(x )x - x x - xi+1i+1iii+1+(

38、 土,)2( x - x ) f(x)x 一 x,i i+( x x )2(x-x )f(x )x, - x,i+1i+1x 4 ,=(x- x )2(h + 2x- 2x ) h 3i+1iii+i+4(x-x )2(h -2x + 2x ) h 3i ii + 1i,4 x3+ h (x - x )2(x - x )i4x 3+ r+ (x x )2(x x )h2ii+1i误差为|f (x) -1 (x)|1h 1=4| f (&)|(x-xj2(x-xi+1)2&max| f (& )|()424 axb2f (x) = 4! = 24h 4 h 4 max f (x) -1 (x) max + - axbh 0i6 1620 .给定数据表如下:X j0.250.300.390.450.53Y j0.50000.54770.62450.67080.7280试求三次样条插值,并满足条件:(1) S (0.25) =1.0000, S (0.53) = 0.6868;解:h = x h = x h = x h = x(2) S ”(0.25) = S (0.53) = 0.x = 0.05-x = 0.09x = 0.064 x3 = 0.08h-,人=hj-1:jh - hjh - hj-1 jj -1j533

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号