文献翻译模板.docx

上传人:小飞机 文档编号:5307445 上传时间:2023-06-24 格式:DOCX 页数:13 大小:212.04KB
返回 下载 相关 举报
文献翻译模板.docx_第1页
第1页 / 共13页
文献翻译模板.docx_第2页
第2页 / 共13页
文献翻译模板.docx_第3页
第3页 / 共13页
文献翻译模板.docx_第4页
第4页 / 共13页
文献翻译模板.docx_第5页
第5页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《文献翻译模板.docx》由会员分享,可在线阅读,更多相关《文献翻译模板.docx(13页珍藏版)》请在三一办公上搜索。

1、Zhongyuan Umversily of Technology毕业设计(论文)译文题目名称:钻酸锂的多元掺杂改性学院名称:材料与化工学院班 级:应用化学082学 号:200801534205学生姓名:王昆指导教师:王红芳李慧2012年 02 月LiNi1/3Coi/3Mni/3O2锂电池阴极材料高压、高容量特点的研究P.Periasamy1, N.Kalaiselvi, *, H.S.-Kim21 Electrochemical Power Systems Division, Central Electrochemical Research InstituteCECRI,Karaikudi

2、, India2 Advanced Materials for Applied Research Laboratory, KERI, Changwon, South Korea *E-mail: kalakanth2Received: 14 June 2007 / Accepted: 1 August 2007 / Published: 1 September 2007摘要:通过目前的研究,人们已经可以通过软化学明胶辅助基础(GAC)燃烧方法 来合成LiNi1/3Co1/3Mn1/3O2阴极。实验发现,长达24小时焙烧温度为750C的 GAC方法对制备有良好的六方排列和更好的循环性能的LiNi

3、1/3Co1/3Mn1/3O2粉末 是必要地。峰强比i(003)/i(104)大于1,表明阳离子混排程度不大。观测到的CV峰 确定了镍、钻、锰离子都是以+3价而存在的。当合成的LiNi1/3Co1/3Mn1/3O2阴极 充电到4.6 V时,它显示出的最大放电容量可达180 mAh/g。因此,该方法证明 通过目前研究合成的LiNi1/3Co1/3Mn1/3O2阴极可以作为一个高电压和高容量的阴 极材料用于充电锂电池中。关键词:明胶辅助燃烧(GAC)方法,LiNi1/3Co1/3Mn1/3O2阴极,比容量,锂电池1引言目前,锂离子电池除了应用于包括3C程序在内的便携式电子设备的动力来 源外,它们还

4、被认为是未来电动汽车领域最有前景的候选者。LiCo O2和LiNiO2 阴极因其高成本和有毒的性质而被排除,近来的研究特别着重于以Li-Mn-O为基 础的系统,将其作为备选阴极材料。与LiMn2O4相比,三价LiMnO2具有285 mAh/g 的很高的理论容量,是LiMn2O4理论容量的两倍Ml,并且报道说相比于Li+/Li电 池,即使在2.0到4.5V之间也有更好的循环性能。在正交晶的LiMnO2中、氧离子 排列在近立方紧密堆中,八面体的间隙被Li、Mn所占据形成有瓦楞的层状结构3。 由于Mn3+(t2g2eg1)在Oh上高自旋的存在,由Jahn-teller扭曲变形而引起的关于Mn3+ 的

5、局部对称性扭曲了。所以,锰的子晶格可以被看作是折叠的三角形,并且折叠 角为111。例如,每个三角都被扭曲成一个是2.806 A和其它两个棱是3.09 A的等 腰三角形囹。尽管LiMnO2阴极有材料成本低、高能密度、高工作电压和可接受的环境特 点等等许多优点,但它要求持续高温加热,并且同样会造成阴极粉末粗化的严重 后果,导致锂化合物的挥发5,这些是阻碍LiMnO2以其原本结构而被全球接受 的主要问题。此外,据报道,随着堆叠层错程度的增加,从正交结构向尖晶石的 转变变得更容易更快速6-9。因此,对岩盐结构的正交LiMnO2粉末的制备,在加 热环境中,应严格监控对氧含量的精确控制。然而通过合适的掺杂

6、方法将金属作为掺杂剂对LiMnO 2部分代替,可使其成 为层状结构而被固定。因为,在锂的嵌入与脱出过程中,晶体稳定性可以通过用 适当的掺杂剂进行部分代替来加强。此外,部分代替不仅对层状结构的稳定性很 有效,而且,在某些情况下,对产生更高的氧化还原电位也很有效10o朝着这 个方向,Cr, Ti, Mg, Ni, Al和V被作为掺杂剂引入LiMnO2中以实现更好的电化 学性能11-12。换句话说,部分取代的Cr3+和Al3+离子通过阻止阳离子重新分配来 降低层状结构向更稳定的尖晶石转化的趋势。并且认为,掺杂剂通过部分引入 锰离子来削弱John-Teller的扭曲程度13。锂可以移动插入氧框架中,报

7、道称钻的 引入增加了 50%锂的数量,因此提高了记忆能力。并且,据报道,掺杂钻可以有 效控制o- LiMnO2向尖晶石LiMn2O4转化的转化率四。因此,有了这样的背景,有人已经研究了在LiMnO2中同时掺杂钻和镍离子, 目的是了解这两种掺杂离子对LiNi1/3Co1/3Mn1/3O2电化学性能的协同影响。在这方 面,一种简单的明胶辅助基础(GAC)燃烧方法15已被应用于探测同时用等量的钻 和镍进行掺杂正交的LiMnO2来合成单一的LiNi1/3Co1/3Mn1/3O2的可能性。在合成 电池活性物质Li-M-O型阴极材料中GAC方法的优点和重要性已经在别处提到过 15。总之,目前研究通过利用钻

8、和镍部分代替LiMnO2合成LiNi1/3Co1/3Mn1/3O2的 匕1-/ J 1-/ J1-/ J 匕优势来增强电化学性能。并且,研究证明在纯净的和电化学的有效形式中通过一 锅法GAC方法能够合成LiNi1/3Co1/3Mn1/3O2阴极,这是让全球人接受的首要事项。2实验部分将一定量的锂、钻、镍和锰的硝酸盐:1:1:1wt %)溶解在双氧水中得到透明溶 液。在溶液中加入搅拌好的明胶溶液,得到的混合溶液在90 - 100C均匀加热1 h 得到一种粘稠液体。由此得到的粘性溶液在120C下干燥12 h并进一步在不同温 度下如300C,600C和750C煅烧。在不同温度下进行加热处理,主要是为

9、了了解 焙烧温度对合成单 相化合物的影响并确定通过GAC方法合成性 能更好的 LiNi1/3Co1/3Mn1/3O 2化合物的最佳温度。基于优化研究的结果,发现焙烧温度不 低于750C对合成纯LiNi1/3Co1/3Mn1/3O2阴极非常重要。因此,进一步试验750C 热处理下,不同加热时间例如3小时、6小时、12小时、24小时对合成LiNi1/3Co1/3Mn1/3O2的物理和电化学性能的影响。收集煅烧最后获得的超细粉粒并 用于接下来的性能测试。用飞利浦X射线衍射仪验证产品的相纯度。在室温,20范围为10-90,扫描速 度为0.02 s-1的条件下,应用nickel-filtered Cu-

10、K a射线记录XRD谱图。颗粒的表 面形貌用扫描电镜分析的图像来检验,这些图像用Jeol S-3000 H扫描电镜获得。 用2016型密封电池来进行循环伏安法、交流阻抗研究和充电放电的研究。金属锂 作为阳极,以乙烯碳酸酯(EC):碳酸二甲酯(DMC )体积比为1:1的1MLiPF6为电 解液。阴极是将85%的活性物质、5% super-P碳和在N-methyl-2-pyrrolidone(NMP) 中的10%聚偏氟乙烯(PVDF)粘合剂制备的,将它覆盖在铝箔上在烘箱中120。下 干燥3 h。将得到的覆盖在铝箔上的压片,用穿孔机在合适的地方穿孔。在真空 手套箱中组装成2016型电池,并在不同的截

11、止电压下用多通道电池循环测试仪 (Toyo multi channel battery cycle life tester)进行电化学循环测试。电化学阻抗 测量和。研究用TOSCAT分光光度计进行。3结果和讨论3.1物理特性研究3.1.1 XRD 研究用X射线衍射分析来检测在不同煅烧温度下合成的LiNi1/3Co1/3Mn1/3O2的结 构的变化以及高纯度和结晶度的变化与获得。基本上,从高煅烧温度例如600C 和750C得到的LiNi1/3Co1/3Mn1/3O2粉末都是黑色的,并且暴露在空气中和潮湿 的环境中也是稳定的。mi&至81|_102030 w 506。70802 theta (do

12、g)图 1观察LiNi1/3Co1/3Mn1/3O2 阴极的 PXRD 谱图a) 300C (3h.);b) 600C (3h.); c) 750C (3h.); d) 750C (12h.) and 750C (24h.)高温处理过的LiNi1/3Co1/3Mn1/3O2粉末的XRD图谱呈现出与有R3m空间结构 的NaFeO2结构高度一致的峰。在布拉格图谱上,没有出现不良杂质峰。所以, 认为过渡金属原子即镍、锰、钻随机分布上3b位置,锂在3a位置,氧原子在6c 位置。从图1可以看出,在300C下加热,得到了一个完全非晶质结构的前驱粉末 (图1 a)。另一方面,经过600C加热处理的样品的XR

13、D谱图显示有布拉格特征峰 出现,表明在这个温度时的LiNi1/3Co1/3Mn1/3O 2化合物的结构。进一步,据了解, 虽然化合物的合成发生在600C,但结晶的过程似乎是不完整的,正如从记录的 样品的整套峰中所观测到的最小强度的峰在600 C出现一样。因此,后期煅烧温 度为750 C是至关重要的16,因此在750C下对样品进行不同时间(3小时、12小时、 24小时)加热是为了 了解在750C下延长加热时间是否会揭露一些 LiNi1/3Co1/3Mn1/3O2样品的良好的物理性能和电化学性能特点。这种粉末的布拉格 图在图1的c-e中呈现。很有意义的一点是,强度比(003)和(104)峰比1大即

14、I(003)/I(104) 1,也有明显的 双峰像(006)、(102)和(108)、(110),这和阳离子没有混合的层状结构相吻合。一 般来说,(006)和(102)双峰紧跟在(101)独立单峰的后面,这种多多少少相似的峰 型被认为是层状LiNiO 2相关化合物17 的均匀性和相纯度,并且这种布拉格图是 LiNi1/3Co1/3Mn1/3O2在750C合成3小时所产生的。剩下的化合物在相对较低的温 度即300和600C(图1a和b)下合成,表现出两个或三个明显的、不对称的峰型和 较低的能见度。结果,从XRD导出,750C下至少加热三个小时是合成均匀、纯 净的LiNi1/3Co1/3Mn1/3

15、O2的必要条件。另一方面,在750C下加热更长时间像12小 时、24小时的化合物清楚展示了双峰如(108)、(110)和(106)、(112)紧随着高度激 烈的单重峰(图1d和e)。依据这一观察,我们导出在750C煅烧24小时是获得纯相 和结晶性能更好的LiNi1/3Co1/3Mn1/3O2的必要条件。晶格参数值即a = 2.82A和c = 14.10A分别和报道值符合切。同时,计算 c/a(表1)强烈排除了阳离子混合,并且也大于4.91。LiNi1/3Co1/3Mn1/3O2样品的晶 格参数的变化,如a,c,c/a,I(003)/I(104)和体积单元、还有R因数的变化随加热时间的 变化都总

16、结在表1中。表1LiNi1/3CoMn1/3Oj*合物不同的晶格参数随锻烧温度的变化煅烧温度a/ Ac/ Ac/aI (003)/ 1(104)R 因数I006+I102 /I101体积单元A600C2.87914.2314.9430.750-102.031750C2.87014.1484.9461.0850.75100.803750C2.85414.1534.9591.3420.71100.658750C2.87714.0594.9671.3470.6099.879Reimers等的报道说R因数被定义为:特征六边双峰,艮四。6)、(102)之和与(101)的强度比扁06)+I(102)/I(

17、101 ),它是六边排列的指示。从表1中可以很明显地看 出,LiNi1/3Co1/3Mn1/3O2样品在750C下加热,R-因数随加热时间增长而线性降 低。较低的值为0.60,是在750C加热24小时的条件下得到的,这指征了良好的 六边排列和更好的循环性能。因此,从R值得出的结论是在750C下加热24小时 时制备具有好的物理和电化学性能的LiNi1/3Co1/3Mn1/3O2粉末的必要条件。进一步 的,所有计算出来的晶格参数值和体积单元都和报道值很接近20。3.1.2 SEM 研究LiNi1/3Co1/3Mn1/3O2样品在750C下加热所捕获的扫描电镜照片放大x10 K被 显示在图2中。从扫

18、描电镜照片中能清楚的看到单声道的分散球形颗粒的形成以 及明显的晶体界限。在高温煅烧中通常都有的集聚过程没有被发现,因为目前研 究根据合成LiNi1/3Co1/3Mn1/3O2的方法,可将其颗粒大小降低在1山以下。这是因 为,颗粒积聚的可能性已经在前驱体加热(在120C、300C、600C)的早期通 过缓慢加热均匀溶解粉末而被控制了。并且在300C后得到的颗粒受到磨削过程 得到进一步的择优取向和均匀分布的尺寸逐渐减小的颗粒。我们最终的晶粒生长 控制颗粒均匀分布模式是为了保持一致,即使在高焙烧温度750C下(图2)也是 这样,根据采用的特殊加热处理,这是有趣的现象,也是有益的影响。同时,使 用明胶

19、易燃燃料是为了揭露一些首选的形态的特点,从而导致或促进 LiNi1/3Co1/3Mn1/3O2的最终形成,使颗粒外观含有一定的晶界。因此,据悉,夹杂 选择类别的易燃燃料作为添加剂在正常燃烧合成方法以及间歇过程的磨削和慢 速度加热中不仅对目标化合物,也能在各式各样的合成化合物、部分的类型和性 质相同的东西可以有更好的物理特性方面的影响。图2 LiNi1/3Co1/3Mn1/3O2阴极在750C合成(24小时)捕获的扫描电镜照片3.2电化学性能研究3.2.1循环伏安30耳3364中隽 3.43-63-340424.44.64_8施geW此哟啊图3750C 24小时条件下合成的LiNi1/3Co1/

20、3Mn1/3O2电极的循环伏安曲线,分别在200gV/sec.和100pV/sec.的扫速下,以锂金属为阳极,以EC:DEC(1:1)的1M LiPF6为电解液图3(a)和(b)显示的是LiNi1/3Co1/3Mn1/3O2电极的循环伏安曲线,这种电极是将 750C 24小时条件下的粉末装成2016型电池,分别在200四V/sec.和100四V/sec.的扫 速下,以锂金属为阳极,以EC:DEC(1:1)的1MLiPF6为电解液进行记录。换句话 说,用循环伏安来研究LiNi1/3Co1/3Mn1/3O2阴极的电化学性能时,扫描电压为从3.0 到4.2V和4.8V (相对于Li/Li+),其中,

21、参比电极和对电极(阳极)都是Li金属。 图2a显示存在对应的插在一个广泛的潜在范围在4.0V的锂离子阳极峰。同样,从 图3a中明显地看出相对等量的锂被提取隐含在3.4V的阴极峰中。此外,。研究 表明,第一个CV循环不同于第二个电压范围为3.0 4.2V的循环,其中第二个通 常发生氧化还原反应。这就导致在第一个循环中可能出现不可逆转的容量损失21 和循环伏安曲线中较大的脱嵌电流,这与第一个循环的容量数值相一致22。由 扫描在100pV/sec.下LiNi1/3Co1/3Mn1/3O2电极系统的循环伏安曲线(图3b)表明在 4.1V与4.0V之间有一个宽的氧化峰电位,这与C3+和C。4+的氧化还原

22、现象相一致 23o同样,在4.6V和3.6V观察的氧化还原峰是氧化态NI3+和Ni4+的,在3.2V观察 的氧化还原峰是氧化态Mn3+和Mn4 +的。这些结果与Lu等人【24 的结果相一致,从 而说明了在3.04.8V的潜在电压下以Li/Li+为对照在锂离子的嵌入与脱嵌中合成 LiNiCoMnO2材料的可逆性。3.2.2阻抗研究一般来说,电化学阻抗的研究是为了更好的理解锂电池的某些方面,如失败 的机制【25,自放电【26,锂电池的循环效率27 和电极与电解质之间的界面现象咨 和锂离子在电极和电解液的扩散。其中,我们通常给予阴极电极较少的关注, 因为在可充电锂电池的商业化过程中,我们更关注涉及到

23、锂阳极的问题。但是, 随着锂和锂离子电池技术的进展,涉及到阴极的问题是报道中影响锂电池性能的 主要因素之一,它通过不可接受的容量衰减和在放电过程中电压的大幅下降来影 响。所以,我们进行了在组装和完全充电状态下LiNi1/3Co1/3Mn1/3O2阴极在2016 型电池中以锂金属为对电极的电化学阻抗测试。图4在不同充电状态下的Li/ LiNi1/3Co1/3Mn1/3O2电池的Nyquis t图a) 5% ; b)25%; c) 50% ; d)75% 和 e)100% SOC图4a和4b,分别显示了作为聚集、SOC Li/LiNi1/3Co1/3Mn1/3O2电池的Nyquist 图。图4a中

24、显示了刚组装的Li/ LiNi1/3Co1/3Mn1/3O2系统和锂第一次脱嵌和嵌入循 环的Nyquist图的对比。高频地区的新鲜电极频谱的半圈要比在循环电极频谱中 高得多30,表明有初始不可逆转的容量损失,这和充放电循环过程中的现象一 样,这种现象不可避免。图4b显示了 Nyquist图中Li/LiNi1/3Co1/3Mn1/3O2电池在不同的充电状态下的 (SOC)值如0%、25%、50%、75%和100%的阻抗图谱。一个半圈高频区和低频区 域的尖峰分别被录得的阻抗图谱表征。一般来说,一个半圈的存在,是因为存在 氧化物表面的钝化膜31。同样,低频尖峰,这是一个孤不完整的半圈,是由于 电化学

25、反应的电荷转移电阻。从图4b中可以看出,电荷转移电阻的增加随充电电 压的升高呈线性下降,这表明LiNi1/3Co1/3Mn1/3O2阴极在更高的荷电状态变得更加导电。换句话说,LiNi1/3Co1/3Mn1/3O2材料在高带电状态SOC - 100%下有最低的 Rct值(85欧姆),是支持了这样一个事实,即在高充电电压条件下, LiNi1/3Co1/3Mn1/3O2材料就变成了良导体。这也可以归结到系统高排水能力32, 所需的高功率锂电池的应用。因此,推断出就LiNi1/3Co1/3Mn1/3O2阴极而言,4.6 V 的高充电电压为优先实现最大限度的特定能力是有益的。3.2.3 充放电研究Sp

26、telfU Capacity inAh图5 LiNi1/3Co1/3Mn1/3O2电池在第1和第20个循环下的电化学性能,其中,阴极是在750C不同加热时间下制备的a - Qd1 750C (3h.) ; a* - Qd20 750C (3h.); b - Qd1 750C (12h.) ; b* - Qd20750C (12h.); c -Qd1 750C (24h.) ; c* - Qd20 750C (24h.)图5a-c显示放电比容量的变化(Qdc)就不同的截止电压是化合物LiNi1/3Co1/3Mn1/3O2表面加热时间如3、12、24小时的函数。在750C 12小时条件 下制备的样

27、品的第20个周期的充放电容量(Qdc20)值被测定为112.79,136.14和 154.14 mAh/g,它们分别是在不可逆容量为2.59、4.28、6.64 mAh/g (是变化的截 止电压4.2、4.4和4.6 V的函数)的条件下测定的。这样的观察,主要归因于缺乏 六边排列,包括锂离子和过渡金属离子的排列的缺乏和较低的结晶度31。一般 来说,由于形成不良氧化物,需要高温和更长的加热时间来形成一个良好有序的 LiNi1/3Co1/3Mn1/3O2相。因此,我们可以理解在750C下加热3个小时和12个小时 的样品表现出最高的比容量值(150180mAh/g),加热时间为3个小时和12个小时

28、的样品有比加热时间更长的样品更合理的比容量(分别为130145mAh/g和140150mAh/g)。从图5b中可以看出,在750C 24小时条件下制备的样品,在不 同的截止电压如4.2、4.4和4.6 V的影响下,即使在第20个循环也分别表现出 128.95,147.15和159.48 mAh/g的放电容量(Qdc20)和好的记忆能力。这些结果是 与报导出的120mAh/g和145mAh/g (4.2V)放电容量值相吻合的,这些是一个类似 的化合物通过增加工作截止电压到4.4 V所展现出来的。因此,从充放电也可得 出结论,研究后认为,24小时750 C的高煅烧温度对制备4.6V的高截止电压下

29、180mAh/g的最大比容量的LiNi1/3Co1/3Mn1/3O2阴极是必要的。4结论在高截止电压(4.6V)条件下,具有较好的结晶度和优良电化学特性的纯相 LiNi1/3Co1/3Mn1/3O2粉末,已通过一种简单的易于操作的GAC方法合成了。基于 XRD和充放电的研究成果,可以得知,像焙烧温度(750C)和加热时间(24小时) 等的最佳反应条件已经达到。阻抗分析有利于对LiNi1/3Co1/3Mn1/3O2阴极充电到 4.6V,以促进在高电压区域的容量提升过程,因为该化合物在100%SO C条件下 可成为良导体。更有意义的一点是,LiNi1/3Co1/3Mn1/3O2阴极经过20次循环后

30、,放 电比容量分别为 129mAh/g (4.2V), 147mAh/g (4.4V)和 160mAh/g (4.6V),这使它在 锂电池中可作为一个高压、高容量阴极来使用。参考文献1 P.GBruce,Chem. Commun., (1997) 1817 M.M.Thackeray, Prog. Solid State Chem. 25 (1997) 13 T.Ohzuku, A.Ueda, T.Harai,Chem.Express, 7 (1992) 1934 J.E.Greedan, N.P.Raju, I.J.Davidson, J.Solid State Chem., 128 (19

31、97) 2095 W.Li, J.C.Currie, J.Electrochem.Soc., 144 (1997) 27736 J.M.Kim, H.T.Chung, J.Power Sources, 115 (2003) 1257 Yl.Chang, B.Haung, H.Wang, D.R.Sadoway, YM.Chung, J.Eelctrochem.Soc., 146 (1999) 32178 H.Wang, Yl.Jang, YM.Chiang, Electrochem.Solid State Lett. 2 (1999) 4909 YM.Chiang, H.Wang, Yl.Ja

32、ng, Chem.Mater. 13 (2001) 5310 J.Cho, B.Park, Electrochem.Solid State Lett. 3 (2000) 35511 J.Cho, YJ.Kim, B.Park, Solid State Ionics, 138 (2001) 22112 C.Storey, I.Kargina, YGrincourt, I.J.Davidson, YC.Yoo, D.YSeung, J.PowerSources, 97-98 (2001) 54113 乙P.Guo, J. Alloys and Compounds 348 (2003) 23114

33、P.GBruce, A.R.Armstrong, R.L.Gitzendamer, J.Mater.Chem 9 (1999) 19315 P.Periasamy, N.Kalaiselvi, J.Power Sources (2006) In Press16 P.Kalyani, N. Kalaiselvi, N.G.Renganathan and M.Raghavan, Int. J. Ionics, 9 (2003) 41717 S.Madhavi,G.V.Subbarao,B.V.R.Chowdari,S.F.YLi, J.Power Sources 93 (2001) 15618 C

34、.Delmas,I.Saadome, A.Rougier, J.Power Sources 43/44 (1993) 59519 J.R.Reimers, e.Rossen,C.D.Jones and J.R.Dahn, Solid State Ionics 61 (1993) 33520 G.H.Kim,S.T.Myung,H.S.Kim,YK.Sun, Electrochim.Acta 51 (2006) 244721 S.Madhavi,G.V.Subbarao,B.V.R.Chowdari,S.F.YLi, Solid State Ionics 152-153 (2002) 19922

35、 G.T.K.Fey,J.GChen, V.Subramanian,T.Osaka, J.Power Sources 112 (2002) 38423 T.Ohzuku, A.Ueda,M.Nagayama,Y.Iwakoshi,H.Komori,Electrochim.Acta 38 (1993) 115924 乙 Lu,R.A.Donaberger,C.L.Thomas,J.R.Dahn, J.Electrochem.Soc, 149 (2002) A108325 R.Koksbang, I.I.Olsen,P.E.Tonder,N.Knudsen, D.Fauteux, J.Appl.

36、Electrochem. 21 (1991) 30126 G.Pistoia,A.Antonin,R.Rosati,D.Zane, Electrochim.Acta 141 (1996) 268327 GMontesperelli, P.Nunziante,M.Pasquili,GPistoia, Solid State Ionics 37 (1990) 14928 M.Gaberscek,S.Pejovnik, Electrochim. Acta 41 (1996) 113729 F.Capuano,F.Croce, B.Scrosati, J.Electrochem.Soc., 138(1

37、991) 191830 M.D.Levi,K.Gamolsky,D.Aurbach,U.Heider,R.Oesten, J. Electroanal. Chem.,580,2(2005) 23131 M.D.Levi,D.Aurbach, J.Power Sources 146, 1-2 (2005)72732 A.R.Armstrong, A.D.Robertson, R.Gitzendanner, P.GBruce, J. Solid State Chem., 145 (1999)54933 K. Kubo, S. Arai, S. Yamada and M. Kanda, J. Power Sources, Volumes 8182(1999)59

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号