《锂离子电池材料.ppt》由会员分享,可在线阅读,更多相关《锂离子电池材料.ppt(105页珍藏版)》请在三一办公上搜索。
1、锂离子电池材料,锂离子电池概述 正极材料 负极材料 隔膜材料 电解质,1.1 电池 电池是一种利用电化学的氧化-还原反应,进行化学能-电能之间转换的储能装置。,电池,一次电池,二次电池,锌锰干电池,纽扣电池,锂原电池,铅酸电池,镍氢电池,锂离子电池,1.锂离子电池概述,锂离子电池,铅酸电池,锂离子电池,一次电池,1.2 电池的应用,1.3 锂离子电池工作原理,锂离子电池的工作原理就是指其充放电原理。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,到达负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。,锂离子
2、电池的工作原理示意图,电池反应:6C+LiCoO2,1.4 锂离子电池电极反应,LiCoO2、LiNiO2、LiMn2O4、LiFePO4等,碳系列、金属锂系列、氧化物系列、其他负极材料等,有机溶剂电解质(液态)聚合物电解质(固态、凝胶),1.5锂离子电池的组成,锂离子电池与镍镉、镍氢电池性能的对比技术参数镍镉电池镍氢电池锂离子电池工作电压(V)1.2 1.2 3.6比容量(Wh/Kg)50 65 105-140充放电寿命(次)500 500 5000自放电率(%/月)25-30 30-35 6-9有无记忆效应有 有 无有无污染 有 无 无,1.6 目前锂离子电池优缺点,40035030025
3、0200150100 50 0,1.7 各种蓄电池的能量密度比较,LIB:锂离子电池LPB:锂聚合物电池PLI:塑性锂离子电池,1.8 锂离子电池的典型充放电曲线和温度变化,1.工作电压高2.能量密度高3.自放电速率低4.循环寿命长5.无记忆效应6.环保,优点,1.9 锂离子电池的优缺点,(1)具有稳定的层状或隧道的晶体结构;,(3)有平稳的电压平台;,(2)具有较高的比容量;,(4)正、负极材料具有高的电位差;,(5)具有较高的离子和电子扩散系数;,(6)环境友好。,1.10 锂离子电池对正、负极材料的要求,2 正极材料,正极材料概述 正极材料是锂离子电池的重要组成部分,在锂离子充放电过程中
4、,不仅要提供正负极嵌锂化合物往复嵌入/脱嵌所需要的锂,而且还要负担负极材料表面形成固体电解质界面膜(SEI)所需的锂。此外,正极材料在锂离子电池中占有较大比例(正负极材料的质量比为3:14:1),故正极材料的性能在很大程度上影响着电池的性能,并直接决定着电池的成本。,大多数可作为锂离子电池的活性正极材料是含锂的过渡金属化合物,而且以氧化物为主。目前已用于锂离子电池规模生产的正极材料为LiCoO2。,锂离子电池正极材料研究现状,2.1 层状结构材料LiCoO2,LiCoO2是锂离子电池中一种较好的正极材料,具有工作电压高、放电平稳、比能量高、循环性能好等优点,适合大电流放电和锂离子的嵌入和脱出,
5、在锂离子电池中得到率先使用。此外,由于它较易制备而成为目前唯一已实用于生产的锂离子电池正极材料 LiCoO2的实际容量约为140 mAh/g,只有理论容量(275 mAhg)的约50,且在反复的充放电过程中,因锂离子的反复嵌入和脱出,使活性物质的结构在多次收缩和膨胀后发生改变,导致 LiCoO2内阻增大,容量减小。,2.1.1 LiCoO2的基本性质,高温制备的LiCoO2具有理想层状的a-NaFeO2型结构,属于六方晶系,R3m空间群;a=0.282 nm,c=1.406 nm。氧原子以ABCABC 方式立方密堆积排列,Li+和Co2+交替占据层间的八面体位置。Li+离子在LiCoO2中的室
6、温扩散系数在10-1110-12m2/s之间。Li+的扩散活化能与Li1-xCoO2中的x密切相关。在不同的充放电态下,其扩散系数可以变化几个数量级。,LiCoO2、LiNiO2结构示意图,2.1.2 LiCoO2/Li组成的纽扣电池,存在的主要问题,(1)实际比容量与理论值275mAh/g有较大差距;(2)资源匮乏,成本高;(3)有环境污染。,主要解决办法,利用Ni、Al等元素掺杂替代,稳定结构,提高电位和比容量,降低成本。,2.1.3 LiCoO2目前存在的问题及解决方法,2.1.4 LiCoO2的制备方法,2.1.4.1高温固相合成法 传统的高温固相反应以锂、钴的碳酸盐、硝酸盐、醋酸盐、
7、氧化物或氢氧化物等作为锂源和钴源,混合压片后在空气中加热到600900甚至更高的温度,保温一定时间。为了获得纯相且颗粒均匀的产物,需将焙烧和球磨技术结合进行长时间或多阶段加热。高温固相合成法工艺简单,利于工业化生产。但它存在着以下缺点:(1)反应物难以混合均匀,能耗巨大。(2)产物粒径较大且粒径范围宽,颗粒形貌不规则,调节产品的形貌特征比较困难。导致材料的电化学性能不易控制。,2.1.4.2 低温固相合成法,为克服高温固相合成法的缺陷,近年来发展了多种低温合成技术。如将钻、锂的碳酸盐按照化学计量比充分混合,在己烷中研磨,升温速率控制在50 h-1,在空气中加热到400,保温一周,形成单相产物。
8、结构分析表明大约有6 的钴存在于锂层中,具有理想层状和尖晶石结构的中间结构。,2.2 LiNiO2正极材料,与LiCoO2相比,LiNiO2因价格便宜且具有高的可逆容量,被认为最有希望成为第二代商品锂离子电池材料。而LiCoO2制备困难,按LiCoO2制备工艺合成LiNiO2所得到材料的电化学性能极差,原因在于LiCoO2属于R3m群,其晶格参数为ah=0.29 nm,ch=1.42 nm,ch/a h=4.9,属于六方晶系,且和立方晶系相应值接近,说明镍离子的互换位置与LiCoO2相比对晶体结构影响很小。而(3a)、(3b)位置原子的互换,严重影响材料的电化学活性。,LiNiO2属于三方晶系
9、,Li与Ni隔层分布占据于氧密堆积所形成的八面体空隙中,因此具有2D层状结构,充放电过程中该结构稳定性的好坏决定其化学性能的优劣。层状化合物的稳定性与其晶格能的大小有关。理论比容量为274mAh/g,实际可达到180mAh/g以上,远高于LiCoO2,具有价廉、无毒,等优点,不存在过充电现象。,LiNiO2的性质,(b)LiNiO2,LiNiO2目前存在的问题及解决方法,.1 存在的问题(1)制备困难。(2)结构不稳定,易生成Li1-yNi1+yO2。使得部分Ni位 于Li层中,降低了Li离子的扩散效率和循环性能。2.2.2.2 主要解决办法 利用Co、Al、Mg等元素掺杂替代,稳定结构,提高
10、电位、比容量和循环性能。改善制备工艺、降低合成条件。对利用Al掺杂替代的LiNi1-xAlxO2材料的结构和性质进行了研究。,结果表明,Al掺杂可以起到稳定结构、提高材料电位和比容量的作用。降低材料合成时对氧气气氛的依赖程度。为了提高电导率,对材料进行Mg掺杂。使得材料的电导率得到提高,达到了实用水平。电化学实验表明,掺杂Mg的材料的工作电压和比容量明显提高,循环性能得到较大改善。但与实际应用还存在一定差距。,2.2.3 LiNiO2的制备方法,LiNiO2的制备方法主要采用固相合成法。方法是LiNO3和Ni(OH)2以一定的化学计量比充分混合后,放入Al2O3的坩埚中,在100马弗炉内低温加
11、热5h,升温到600,恒温5h,取出研磨后,放进干燥器中备用。,LiMn2O4具有尖晶石结构,属于Fd3m空间群,氧原子呈立方密堆积排列,位于晶胞的32d位置,锰占据一半八面体空隙16d位置,而锂占据1/8四面体8a位置。,2.3 LiMn2O4材料,2.3.1 LiMn2O4结构,Mn2O4构成的尖晶石基本框架,锂离子在尖晶石中的化学扩散系数在10-1410-12m2/s之间,Li+占据四面体位置,Mn3+/Mn4+占据八面体位置。空位形成的三维网络,成为Li+离子的输运通道,利于Li+离子脱嵌。LiMn2O4在Li完全脱去时能够保持结构稳定,具有4V的电压平台,理论比容量为148mAh/g
12、,实际可达到120mAh/g左右,略低于LiCoO2。,存在的主要问题 结构热稳定性差,易形成氧缺位,使得循环性能较差。主要解决办法 利用Co、Ni等元素掺杂替代,稳定结构,提高比容量和循环性能。到目前为止,LiNiO2和LiMn2O4的研究虽有一些突破,有一些应用,但还有许多关键问题没有解决,在性能方面还与LiCoO2有着较大差距。目前LiCoO2仍是小型锂离子电池的主要正极材料。,2.3.2 LiMn2O4存在的主要问题及解决方法,LiMn2O4制备方法,LiMn2O4制备主要采用高温固相反应法。固相反应合成方法是 锂盐和锰盐或锰的氧化物为原料,充分混合后在空气中焙烧制备出正尖晶石LiMn
13、2O4化合物再经过适当球磨、筛分以便控制粒度太小及其分布 工艺流程可简单表述为:原料混料焙烧研磨筛分 产物 一般选择高温下能够分解的原料。常用的锂盐有:LiOH、Li2CO3 等。使用MnO2作为锰源。在反应过程中,释放CO2和氮的氧化物气体,消除碳和氮元素的影响。原料中锂锰元素的摩尔比一般选取1:2。通常是将两者按一定比例的干粉研磨,加入少量环己烷、乙醇或水作分散剂,以达到混料均匀的目的。焙烧过程是固相反应的关键步骤,一般选择的合成温度范围是600 800。,2.4 动力电池正极材料LiFePO4,LiFePO4基本结构及性质 LiFePO4晶体是有序的橄榄石型结构,属于正交晶系,空间群为P
14、nma,晶胞参数 a=1.0329nm,b=0.60072nm,c=0.46905nm。在LiFePO4晶体中氧原子呈微变形的六方密堆积,磷原子占据的是四面体空隙,锂原子和铁原子占据的是八面体空隙。LiFePO4具有3.5V的电压平台,理论容量为170mAh/g。,LiFePO4基本结构,LiFePO4的性能 LiFePO4中强的P-O共价键形成离域的三维立体化学键,使得LiFePO4具有很强的热力学和动力学稳定性,密度也较大(3.6g/cm3)。由于O原子与P原子形成较强的共价键,削弱了与Fe的共价键,稳定了Fe3+/Fe2+的氧化还原能级,使Fe3+/Fe2+电位变为3.4V(vs.Li+
15、/Li)。此电压较为理想,因为它不至于高到分解电解质,又不至于低到牺牲能量密度。LiFePO4具有较高的理论比容量和工作电压。充放电过程中,LiFePO4的体积变化比较小,而且这种变化刚好与碳负极充放电过程中发生的体积变化相抵消。因此,LiFePO4正极锂离子电池具有很好的循环可逆性,特别是高温循环可逆性,而且提高使用温度还可以改善它的高倍率放电性能。,由于在具有橄榄石结构的磷酸盐体系中,所有的氧离子都通过很强的共价键与P5+构成稳定的(PO4)3-聚阴离子基团,因此晶格中的氧不易丢失,这使得该材料具有很好的安全性。与其它正极材料相比,Li+在LiFePO4中的化学扩散系数较低,约在1.810
16、-162.210-14/cm2/s。室温下LiFePO4的电子电导也远低于其它正极材料,大约在10-9/S/cm。,磷酸铁锂的优缺点 优点:(1)优异的安全性能(2)优异的循环稳定性,8000次高倍率充放电循环,不存在安全问题。(3)适于小电流放电,温度越高材料的比容量越大。(4)成本低,环保。(5)材料结构的动力学和热力学稳定性很高。,缺 点 在结构中由于八面体之间的PO4四面体限制了晶格体积的变化,从而使得Li 的嵌入脱出运动受到影响,造成LiFePO4材料极低的电子导电率和离子扩散速率,决定了纯的LiFePO4只适合于小电流密度下的充放电。当电流密度增大时,比容量迅速下降。室温下,即使以
17、小电流充放电,其放电比容量都很难达到理论比容量。,Battery Materials for Ultrafast Charging And Discharging,The storage of electrical energy at high charge and discharge rate is an important technology in todays society,and can enable hybrid and plug-in hybrid electric vehicles and provide back-up for wind and solar energy.L
18、iFePO4 has been considered the most possible candidate of cathode material for Lithium Ion Battery systems to take place in large-scale application,but the intrinsic low Li+ion diffusion constant and low electron conductivity hindered its development.Here,Byoungwoo Kang&Gerbrand Ceder in MIT develop
19、ed a strategy to synthesis cathode material for lithium battery with extremely high Rate performance,by creating a fast ion-conducting surface phase through controlled off-stoichiometry(非化学计量).A rate capability(倍率性能)equivalent to full battery discharge in 10-20s can be achieved,which is similar to o
20、r higher than the power density in Supercapacitor.nature 2009 March 12 Vol 458 page:190-193,.LiFePO4的合成方法,2.4.4.1 固相合成法 固相合成法是制备电极材料最为常用的一种方法。Li源采用碳酸锂、氢氧化锂或磷酸锂;Fe源采用乙酸亚铁、乙二酸亚铁、磷酸亚铁;P源采用磷酸二氢铵或磷酸氢二铵,经球磨混合均匀后按化学比例进行配料在惰性气氛(如Ar、N2)的保护下经预烧研磨后高温焙烧反应制备LiFePO4。,2.4.4.2 水热法,水热法也是制备LiFePO4较为常见的方法。它是将前驱体溶成水溶液,
21、在一定温度和压强下加热合成的。以FeSO4、H3PO4和LiOH为原料用水热法合成LiFePO4。其过程是先把H3PO4和FeSO4溶液混合,再加入LiOH搅拌1min,然后把这种混合液在120保温5 h、过滤后,生成LiFePO4。,目前由于磷酸铁锂结构中没有连续直接的锂离子通道,使得离子迁移率低。结构中没有连续的FeO6八面体网络,电子只能依靠Fe-O-Fe传导,电子导电率低。问题的解决主要是通过Mg、Al、Ti、Nb和W等元素掺杂,人为制造结构缺陷,来提高离子迁移率和电子导电率。目前经掺杂后离子迁移率和电子导电率均得到大幅度提高,达到了使用要求。其中,电导率提高了8个数量级,高于LiCo
22、O2。,磷酸铁锂主要存在的问题及 主要解决办法,2.5 钒系正极材料,目前,锂钒化合物系列已引起了人们的关注。钒为典型的多价(V2+、V3+、V4+、V5+)过渡金属元素,有着非常活泼的化学性质,钒氧化物既能形成层状嵌锂化合物VO2、V2O5、V3O7、V4O9、V6O13、LiVO2及LiV3O8,又能形成尖晶石型LiV2O4及反尖晶石型的LiNiVO4等嵌锂化合物。与已经商品化的钴酸锂材料相比,上述钒锂系系材料具有更高的比容量,且具有无毒,价廉等优点,因此成为了新一代绿色、高能锂离子蓄电池的备选正极材料。,.钒系正极材料概述,LiV3O8的合成方法,合成制备Li1+xV3O8的方法主要包括
23、两种:1.高温固相合成法 2.低温液相合成法。制备纯净结构完整的嵌锂活性材料是保证合成材料具有优良电化学性能的首要前提。不同的制备方法合成制备得到不同形貌的LiV3O8化合物,并进一步对活性材料的放电比容量、循环效率、可逆性等电化学性能指标产生显著影响。,2.5.2.1 高温固相合成 高温固相反应法是将两种或者两种以上的固体反应物机械混合,经高温处理使得反应物在熔融状态下反应从而得到目标产物的材料制备方法。以Li2CO3和V2O5为反应原料,混合后,在680烧结一段时间,然后降温至室温得到目标产物。该方法合成的正极材料以3mA/cm2大小的放电电流的放电比容量达285mAh/g。充放电循环 3
24、00多次后,容量降为120130mAh/g。高温固相反应方法具有操作简便,工艺简单,易应用于工业化等优点。但是采用该合成方法,能耗巨大,另外由于锂和V2O5的挥发,导致很难准确控制反应物的量。,为了提高 LiV3O8的电化学性能,人们提出了许多改进方法,包括:1)高效研磨 2)溶胶-凝胶法 3)超声波处理 4)快速冷却 5)用Na等取代Li、在LiV3O8层状结构间嵌入无机物分子(如NH3、H2O和CO2)等。其中在层间嵌入无机小分子或者用Na、K取代Li可引起层与层之间的膨胀,易于提高锂离子的迁移和锂离子在层间的分散,从而提高了LiV3O8的电化学性能。,快速冷却法 以Li2CO3和V2O5
25、为反应原料(Li:V=1:3),均匀混合后,在650温度下烧结10小时,烧结完成后,将高温熔融体迅速倒入水中冷却,冷却至室温后,以不同加热温度进行后续热处理得到最终产物LiV3O8。图1为用这种方法得到Li1+xV3O8材料的SEM图。快速冷却法制备的材料中未经热处理的Li1+xV3O8具有最高的首次放电比容量,以0.2mA/cm2的电流密度放电,充放电电压区间为1.73.8V,该材料可达到250mAh/g的初放电比容量。而经后续热处理的Li1+xV3O8具有较好的循环性能。可以看出从快速冷却的改进方法得到的Li1+xV3O8电化学性能要好于普通的高温固相合成方法。,图:快速冷却法产品的SEM
26、图:(a)未热处理(b)经过150热处理,2.5.2.3 低温液相合成 液相方法不需要高的反应温度,产物均一性好,并具有高的比容量,溶胶-凝胶法和沉淀法都属于液相法,液相法合成的Li1+xV3O8多属非晶态物质。1mol 非晶态Li1+xV3O8理论上最多可以嵌入9mol Li+,而1mol 晶态LiV3O8只可嵌入3mol Li+,另外Li+在非晶态Li1+xV3O8中的扩散路径短,使其能够快速嵌入和脱出,能够在快速充电下进行长周期循环。,2.5.2.4 水热法 水热法是在特制的密闭反应容器(高压釜)里,采用水溶液为反应介质,通过对反应容器加热,创造一个高温、高压的反应环境,使得通常难溶或不
27、溶的物质溶解并且重结晶。用水热法可直接得到结晶良好的粉体,不需要高温灼烧处理,避免了在此过程中可能形成的粉体硬团聚及晶粒长大。粉体晶粒的物相和形貌与水热反应条件有关。可通过改变反应温度,反应时间及前驱物形式等水热条件调节粉体晶粒尺寸大小,该法工艺简单,容易得到合适的化学计量物,纯度较高,由于在结晶过程中可排除前驱物中杂质,因而大大提高了纯度。,图3为水热法得到LiV3O8产品的SEM图:产物为棒状,直径约为40nm,长度可达600nm(见下图)。实验发现加热温度越高,得到的Li1+xV3O8纳米棒的晶型越好,其放电性能越差。在300合成的样品,在电流密度为0.3mA/cm2,充放电电位在1.8
28、4.0V间,其首次放电比容量为302mAh/g。循环30次后,其比容量为278mAh/g。产物的形貌对电化学性能有影响:水热法合成的LiV3O8电池材料颗粒尺寸介于纳、微米之间,且颗粒分布相对均匀,所组成的材料有着较好的结构稳定性,因此对锂离子的扩散阻碍起了一定的补偿作用。,图:水热法制得棒状Li1+XV3O8产品的TEM图 Fig.TEM of Li1+XV3O8 by hydrothermal technology,2.6 其他类型的正极材料,为了进一步提高二次锂离子电池的容量,目前正在广泛探索新型正极材料,如电压为5 V的锂离子电池正极材料Li2MMn3O8(M代表Fe、Co、Cu)、电
29、压为3 V的锂电池正极材料LixMnO2(CDMO)、无机非晶材料V2O5和-MnO2,以及导电高分子聚合物和有机硫化物正极材料。,3.负极材料 锂离子电池的负极材料主要是作为储锂的主题,在充放电过程中实现锂离子的嵌入和脱嵌。从锂离子的发展来看,负极材料的研究对锂离子电池的出现起着决定作用,正是由于碳材料的出现解决了金属锂电极的安全问题,从而直接导致了锂离子电池的应用。已经产业化的锂离子电池的负极材料主要是各种碳材料,包括石墨化碳材料和无定形碳材料和其他的一些非碳材料。纳米尺度的材料由于其特殊的性能,也在负极材料的研究中广泛关注,而负极材料的薄膜化是高性能负极和近年来微电子工业发展堆化学电源特
30、别是锂离子二次电池的要求。,各种锂离子电池负极材料,3.1 碳材料,1)石墨作为锂离子电池负极时,锂发生嵌入反应,形成不同阶的化合物LixC6。2)SEI膜的形成 SEI膜是指在电池首次充放电时,电解液在电极表面发生氧化还原反应而形成的一层钝化膜。石墨的晶体结构,石墨材料,3.SEI膜形成机理,SEI膜的形成一方面消耗有限的Li+,减小了电池的可逆容量;另一方面,增加了电极、电解液的界面电阻,影响电池的大电流放电性能。两种物理模型(1)Bernhard认为:溶剂能共嵌入石墨中,形成三元石墨层间化合物(GIC,graphite intercalated compound),它的分解产物决定上述反
31、应对石墨电极性能的影响;EC(Ethyl cellulose,乙基纤维素)的还原产物能够形成稳定的SEI膜,即使在石墨结构中;PC(聚碳酸酯)的分解产物在石墨电极结构中施加一个层间应力,导致石墨结构的破坏,简称层离。,(2)Aurbach在Peled的基础上,在基于对电解液组分分解产物光谱分析的基础上发展起来的。他提出下面的观点:初始的SEI膜的形成,控制了进一步反应的特点,宏观水平上的石墨电极的层离,是初始形成的SEI膜钝化性能较差及气体分解产物造成的。,4)石墨材料的性能 石墨材料导电性好,结晶度较高,具有良好的层状结构,适合锂的嵌入一脱嵌,形成锂一石墨层间化合物LiGIC,充放电比容量可
32、达300mAh/g以上,充放电效率在90以上,不可逆容量低于50mAh/g。锂在石墨中脱嵌反应发生在00.25V左右(vs.Li+/Li),具有良好的充放电电位平台,可与提供锂源的正极材料LiCoO2、LiNiO2、LiMn2O4等匹配,组成的电池平均输出电压高,是目前锂离子电池应用最多的负极材料。石墨包括人工石墨和天然石墨两大类。人工石墨是将易石墨化炭(如沥青焦炭)在N 气氛中于19002800经高温石墨化处理制得。,常见人工石墨有中间相碳微球(MCMB)和石墨纤维。天然石墨有无定形石墨和鳞片石墨两种。无定形石墨纯度低,石墨晶面间距(d002)为0.336nm。主要为2H晶面排序结构,即按A
33、BAB顺序排列,可逆比容量仅260mAh/g,不可逆比容量在100 mAh/g以上。鳞片石墨晶面间距(d002)为0.335nm,主要为2H+3R晶面排序结构,即石墨层按ABAB 及ABCABC 两种顺序排列。含碳99以上的鳞片石墨,可逆容量可达300350 mAh/g。,5)石墨负极材料的的测试参数,石墨材料4次恒流充放电曲线,石墨材料的性能测试数据,Stage 1,Stage 2,Stage 3,Stage 4,石墨层锂层,Ic,Ic,Ic,Ic,6)嵌锂石墨(LiC6)脱锂时的结构变化,3.1.2 石墨类炭材料的嵌锂特性,1)嵌锂容量高。结构完整的石墨,其理论容量为372mAh/g。2)
34、嵌锂电位低且平坦。大部分嵌锂容量分布在0.00.2V之间(vs.Li/Li+),这为锂离子电池提供高而乎稳的工作电压。3)容量受溶剂的影响程度较大,与有机溶剂的相容能力差。除了与PC(聚碳酸酯)不相容外,与THF、DMSO、DME(乙二醇二甲醚)的相容能力差。原因是在这些溶剂体系中,不能在炭负极表面形成一层很好的保护层,导致溶剂插入石墨层间并可能在石墨结构层内还原,最终使石墨结构层离。解决的方法是加入第二种、甚至第三种溶剂。,3.2 MCMB系负极材料,3.2.1 MCMB系负极材料概述 20世纪70年代韧,日本的山田(Yamada)首次将沥青聚合过程的中间相转化期间所形成的中间相小球体分离出
35、来并命名为中间相炭微球(mesocarbon microbeads,MCMB 或(mesophase fine caxbon MFC),随即引起炭素材料工作者极大的兴趣并进行了较深入的研究。由于MCMB具有独特的分子层片平行堆砌结构,又兼具微球形特点和自烧结性能,已成为锂离子电池的负极材料、高密度各向同性炭石墨材料高比表面积徽球活性炭及高压液相色谱的填充材料的首选原料。,3.2.2 MCMB制备方法,自从山田(Yamada)等成功地用聚合法制备出MCMB以来,又相继出现了一些MCMB的制备方法,这些方法按照工艺原理可以分为三类。1)聚合法:该方法是制备MCMB的传统方法。目前市场所售MCMB即
36、用该法生产。其工艺流程如图:,聚合法生产MCMB工艺淹程,2)乳化法 在可熔融中间相制备工艺出现后,有人将乳化成球的工艺用到MCMB的制备上,从而制备出了球径均匀的MCMB。其工艺流程如图:,乳化法生产MCMB工艺流程,3)悬浮法 将所用沥青溶解于四氢呋喃等有机溶剂中,加入到含有悬浮剂(如聚乙烯醇)的水溶液中,充分搅拌,使沥青溶液与水溶液成为乳状液,加热到一定温度,有机溶剂挥发。沥青则留在水溶液中成为沥青小球体。通过控制沥青溶液的浓度和搅拌速度可控制所得MCMB的球径。工艺流程如图:,悬浮法生产MCMB工艺流程,3.2.3 MCMB的应用,MCMB由于具有层片分子平行堆砌的结构,又兼有球形的特
37、点,球径小而分布均匀,已经成为很多新型炭材料的首选基础材料,如锂离子二次电池的电极材料、高比表面活性炭微球、高密度各向同性炭石墨材料、高效液相色谱柱的填充材料等。,1)作为自烧结材料制备高密度各向 同性炭-石墨材料,各种炭石墨材料制品,无论是导电材料或是结构材料,都必须有一定的强度才能经得住碰撞、受压、弯曲等外力作用。一般来讲,平行于挤压或模压方向的力学性能和电性能要好于另一方向。但对于一些特殊的领域,要求材料的各向异性程度要小,即从不同的方向测试,性能指标差别要小。在化工生产中,大量使用各种气体压缩机,要求被压缩气体不被污染或者不起化学反应而避免使用润滑油,在这些场台,石墨耐磨损材料则可以大
38、显身手,但对石墨材料的性能要求也很高。经典的炭石墨材料的制备方法是石油焦,沥青焦、无烟煤等,加煤焦油、沥青、甚至中间相等粘结剂,充分捏混后模压或挤压成型、煅烧。,2)制备高比表面活性炭,活性炭是炭材料领域中是一重要的分支,在液体的分离与净化脱色、气体净化和分离、催化剂及催化剂载体、甚至医疗用品方面都有着很重要的作用根据对产品性能要求不同,活性炭可以通过各种活化工艺从多种原料来制备。笼统的区分可以将制备活性炭的原料分为动植物类和矿物类,而活化方式可分为物理活化和化学活化。活性炭的形态可分为粉状、粒状、球状或毡布等。按性能又可分为普通活性炭和高比表面活性炭。普通粒状活性炭的共同缺点是分布宽、吸脱附
39、速度和效率低。,3)高性能电池的电极材料,众所周知,炭素材料是制备各种电池的重要材料。从干电池到今天的燃料电池以及正在开发的新型储能电池,都采用了各种类型的炭素材料,如表所示。,3.3 合金类电极材料,用作锂离子电池负极的金属材料有Si、Sn、Ge、Pb等。金属类电极材料一般具有较高的理论比容量,但是锂反复的嵌入脱出会导致合金类电极在充放电过程中的体积变化较大,从而使金属电极逐渐粉化失效,使电池循环性能较差。目前,解决粉化问题的方法就是制备超细合金(如纳米级合金),或 制备活性/非活性复合合金体系。而纳米尺寸的金属氧化物材料也是一种较好的锂离子电池的负极材料。2001年,Naichao Li
40、等人用纳米结构的SnO:作负极材料,结果发现,这种材料具有很高的容量(在8时,一般大于700 mAh/g),而且经过800次循环后仍然具有充分电性能。,SnFe合金材料的研究,合成方法 1.取0.05mol的SnCI22H2O晶体,溶于100ml无水乙醇中,取0.05mol的FeCl36H2O晶体溶于100ml蒸馏水中,在搅拌下将上述两等体积溶液同时等速地滴加到过量的浓氨水中,加热回流,趁热过滤,用蒸馏水反复洗涤至中性,将沉淀在120下烘干48h,得到SnFeO2.5粉末。其化学反应方程式为:,2.将制得的SnFeO2.5放入小瓷舟内,置于还原炉的恒温区处(见图1),把A、B、C、D三通阀置于
41、系统空气排出流路状态,向体系中通入氢气,净化炉内空气后,把B、C、D三通阀置于系统封闭循环流路状态,封闭系统,当系统内氢气压力达到一定值时,停止通入氢气,把A三通阀置于封闭状态,打开气体泵使氢气在系统内循环,将还原炉升温,加热到一定温度,恒温,进行还原。记录系统内压力的变化,当体系的压力恒定不变后,反应终止,停止加热,冷却至室温,得到SnFe合金粉,样品保存在真空干燥器中。其化学反应方程式为:,此法制备的SnFe合金材料首次放电容量为360mAh/g,首次充电容量为340mAh/g,其效率为94.4%;第20周的放电容量是首次放电容量的75,充电容量是首次充电容量的66%,其充放电效率为83%
42、。,3.4 氧化物负极材料,Li4Ti5O12 为尖晶石型结构 空间群为Fd3m。锂离子在晶 体结构中占据了2 个位置:一部分Li+位于 四面体8a 位,其余的Li+和全部的Ti4+以 Li4Ti5O12结构示意图 Li:Ti=1:5 随机分布在八面体的16d 位,而O2-则位于32e 位上,因此它可以表示为(Li)8a(Li1/3,Ti5/3)16dO432e。Li4Ti5O12相对于金属锂的电位是1.55V,可以与4V的正极材料LiFePO4、LiCoO2、LiMn2O4等配对,形成2.5V的电池。,3.4.1 Li4Ti5O12材料结构,3.4.2 Li4Ti5O12的制备方法及改性,L
43、i4Ti5O12的制备方法主要有固相反应和溶胶凝胶法。3.4.2.1 固相反应合成Li4Ti5O12 通常将TiO2与Li2CO3或LiOHH2O混合,然后在高温(800-1000)下处理12-24h得到产物。为了使原料达到充分均匀的混合目的,通常采用高能球磨,目的是获得粒径较小的粉体,以提高电池的电化学性能。,3.4.2.2 溶胶凝胶法合成Li4Ti5O12,溶胶凝胶法原理 溶胶凝胶法使一种液相合成方法,可以合成纳米级超细粉末,一般采用有机前去提为原料,通过原料的水解或醇解形成溶胶,溶胶在一定条件下挥发溶剂,老化失去流动性得到凝胶,在经过热处理得到最后的产物。,溶胶凝胶法合成方法 将适量的异
44、丙醇钛TiOCH(CH3)24加入乙酸锂的甲醇溶液中,得到黄色的胶体,搅拌1小时得到白色凝胶,在60下干燥一天得到干凝胶,然后再将干凝胶在700-800 煅烧得到产品。此法制得的Li4Ti5O12插锂电位为1.55V,容量达到理论容量的95%。,3.4.3 Li4Ti5O12的掺杂改性 由于Li4Ti5O12是电子 绝缘材料,导电性较差,因此需要对其进行改性。对其掺杂改性可以从Li+、Ti4+或O2-等方面进行。Li4Ti5O12掺杂C后的充放电曲线 为了提高电子导电能力,应引入自由电子或电子空穴。当掺杂的阳离子价态+2价,并且是掺杂Li+位置时,就可产生自由电子;当引入的阴离子价态-2价时,
45、也可产生自由电子。这两条途径是提高Li4Ti5O12的电子导电能力,改善其高倍率性能的主要方向。,3.4.4 Li4Ti5O12应用前景 1.当与4V的正极材料(LiMn2O4,LiCoO2)组成电池时工作电压接近2.5V,是镍氢电池的2倍。与 LiMn2O4可以组成性能优异的动力锂离子电池。2.在25下,Li4Ti5O12的化学扩散系数为210-8m2/s,比碳负极材料中的扩散系数大一个数量级。高的扩散系数使得Li4Ti5O12可以在快速、多次循环脉冲电流的设备中得以应用。3、Li4Ti5O12作为电池负极材料,相对于石墨等碳材料来说,具有安全性好、可靠性高和寿命长等优点,因此在电动汽车、储
46、能电池等方面得以应用。,4 隔膜材料,锂离子电池中隔膜材料主要有带有自闭孔特性的聚乙烯、聚丙烯多孔膜。目前使用的锂离子电池中隔膜材料基本为日本和德国所垄断,也成为目前降低锂离子电池价格的主要难题之一。在真正可实用化的全固态聚合物电解质出现之前,这类带有自闭孔特性的聚乙烯、聚丙烯多孔膜在锂离子电池中的地位将不可动摇。而对于全固态聚合物电解质来说,目前基于聚氧乙烯(PEO)基体系在常温条件下的性能上不能完全满足锂(离子)二次电池工作的需要,如要取得突破仍有大量的研究工作需要进行。,隔膜材料,隔膜材料,隔膜材料,随着电池技术的进步和多样化,隔膜材料也在进行不断改进,主要方向有:(1)采用超高分子量的
47、聚合物或利用成形技术 对结晶性、结构机构控制,实现高强度的薄型化隔膜;(2)利用成形技术控制孔的形状、直径和孔隙率等,来提高隔膜的离子透过性;(3)为了提高隔膜材料的电流遮断性,按照要求的不同而采用不同的聚合物或采用熔点不同的聚合物的复合材料。,5 电解质,电解质是制备高功率密度和高能量密度、长循环寿命和安全性能良好的锂离子电池的关键材料之一。用于锂离子电池的电解质一般满足的要求:a 离子电导率 电解质必需具有良好的离子导电性而不能具有电子导电性。一般温度范围内,电导率要进到10-1210-3 s/cm数量级之间。b 锂离子迁移数 阳离子是运载电荷的重要工具。高的离子迁移数能减小电池在充、放电
48、过程中电极反应时的浓度极化使电池产生高的能量密度和功率密度。较理想的锂离子迁移数应该接近于1。,c 稳定性 电解质一般存在两个电极之间当电解质与电极直接接触时,不希望有副反应发生,这就需要电解质有一定的化学稳定性。为得到一个合适的操作温度范围,电解质必须具有好的热稳定性。另外电解质必须有一个05V的电化学稳定窗口,满足高电位电极材料充放电电压范围内电解质的电化学稳定性和电极反应的单一性。,d 机械强度 当电池技术从实验室到中试或最后的生产时,需要考虑的一个最重要问题就是可生产性。虽然许多电解质能装配成一个无支架膜,能获得可喜的电化学性能,但还需要足够高的机械强度来满足常规的大规模生产包装过程。
49、e 安全,无毒,无污染。,目前,人们对无机锂盐水溶渡的性质和作用机理比较了解它们在锂二次电池中虽有过应用,但平均电压较低。如LiMnO4LiNO3VO2锂离子二次扣式电池,其平均电压只有1.5 V。若以锂盐为溶质溶于有机溶剂制成非水有机电解质,电池的电压大大提高。常用溶剂的主要物理化学性质如表。,5.1 有机电解质,电解质的一个重要指标是电导率。理论上,锂盐在电解质中离解成自由离子的数目越多,离子迁移越快,电导率就越高。溶剂的介电常数越大,锂离子与阴离子之间的静电作用力越小,锂盐就越容易离解,自由离子的数目就越多;但介电常数大的溶剂其粘度也高,致使离子的迁移速率减慢。对溶质而言,随着锂盐浓度的
50、增高,电导率增大但电解质的粘度也相应增大;锂盐的阴离子半径越大,由于晶格能变小,锂盐越容易离解,但粘度也有增大的趋势,这些互为矛盾的结果,使得在特定的电解质中电导率的极大值通常处于锂盐浓度l.11.2mol/l之间。,5.2 聚合物电解质,聚合物电解质按其形态可分为凝胶聚合物电解质(GPE)和固体聚合物电解质(SPE),其主要区别在于前者含有液体增塑剂,而后者没有。电池体系离子载流子,对电子而言必须是绝缘体。用于锂二次电池中的聚合物电解质必须满足化学与电化学稳定性好,室温电导率高,高温稳定性好,不易燃烧,价格合理等特性。聚合物电解质的基体类型主要有:同种单体的聚合物、不同单体的共聚物、不同聚合