《无穷网络的解题思路与示例.docx》由会员分享,可在线阅读,更多相关《无穷网络的解题思路与示例.docx(3页珍藏版)》请在三一办公上搜索。
1、无穷网络的解题思路与示例文/李伯生20世纪80年代以来,在各种物理竞赛(包括奥林匹克物理竞赛)中,常常出现无穷网络的 等效电阻的计算问题.解决这类问题的的基本思路和技巧,就是理解无限”的意义,分析无限和 有限这对矛盾,巧妙地创造条件,使无限向有限转化.下面我们先来讨论几种不同类型的无穷网 络,然后以此为基础去讨论比较复杂的问题.一、开端形半无穷梯形网络如图1所示电路称为开端形半无穷梯形网络.因为是无穷网络,所以a、b间等效电阻与去 掉一个格子后的电阻应相等,即Rab = Rx + R3+(R2Rab/(R2 + Rab),& +弓+ J (表1 +占3)(只1 +盹 +4我卫)r、闭端形半无穷
2、梯形网络如图2所示电路称为闭端形半无穷梯形网络.因为是无穷网络,所以c、d间的电阻同样应 与格子数无关,故有R =% (R +R3+R )/(R2+(R +R3+R ),即 Cd 2 展213 Cd_ J(我1 +艮3)(& + .三+4成卫)-_曳氏血=R2.三、中间缺口形无穷梯形网络如图3所示电路为中间缺口形无穷梯形网络.它可以看成是在e、f处两个相同的开端形半 无穷梯形网络并联而成,所以J顷1 +一 )(因1 +艮+4馈 +因1 +矣R f=(1/2)R b=耳四、底边缺口形无穷梯形网络如图4所示电路称为底边缺口形无穷梯形网络.它可以看成是两个相同的闭端形半无穷梯形网络与电阻R1串联而成
3、,il 艮+ R*)(+ 乩.+ 4 j?.-!)-三R h=Rx+2R d-心 l 切八13 I 3-R3.五、完整形无穷梯形网络如图5所示电路称为完整形无穷梯形网络.欲求i、j间的等效电阻R.可以有不同的方 法.我们可以将完整形无穷梯形网络看成是一个开端形半无穷梯形网络与一个闭端形半无穷梯形 网络并联而成,因此有R =R R /(R +R ), 将式、j式花入上式化简得Cdr.=R,(&+&)饵 + 艮+但).我们也可以将完整形无穷梯形网络看成是中间缺口形无穷梯形网络与R2并联而成,于是有ij = R2 R(R, + Rf),R =R R /(R +R ), 将式代入,化简得2R =项国+
4、馈既+5侧).如果我们欲求完整形无穷梯形网络j、k之间的等效电阻可将其看作是底边缺口形无穷梯形 网络与日3并联而成,则R =RR /(R+R ),将式代入,化简得炽1 -*RR 一jk例题 空间电阻丝无限网络如图6所示,每一段金属丝的电阻均为r,试求A、B间的等效电阻R.AB解法一 设想电流从A点流入,从B点流出,由对称性可知,网络中背面那一根无限长电阻丝中各点等电势,故可撤去这根电阻丝,而把空间网络等效简化为如图7所示的平面完整形无穷梯形网络,其中R| = 式有r,R2=(2/3)r,R3=r .根据R =ABx = R3R =AB忌成l+艮+4&),= r,R2=(2/3)r代入可得 (2/21)r.解法二 因网络相对A、B连线具有左、右对称,故可折叠成如图8所示电路.此网络可视 为A、B之间电阻(2/3)r与图中C、D为两端点的开端形半无穷梯形网络并联而成._ 1十瓦 + J顷1十电顷1十 十4馈 底00 F F J2 2 12 3+212二=r所以日 =AB2八 21 f十最