向量的概念课件.ppt

上传人:小飞机 文档编号:5339803 上传时间:2023-06-27 格式:PPT 页数:21 大小:484.50KB
返回 下载 相关 举报
向量的概念课件.ppt_第1页
第1页 / 共21页
向量的概念课件.ppt_第2页
第2页 / 共21页
向量的概念课件.ppt_第3页
第3页 / 共21页
向量的概念课件.ppt_第4页
第4页 / 共21页
向量的概念课件.ppt_第5页
第5页 / 共21页
点击查看更多>>
资源描述

《向量的概念课件.ppt》由会员分享,可在线阅读,更多相关《向量的概念课件.ppt(21页珍藏版)》请在三一办公上搜索。

1、5.1 向量,引 入,新 课,作 业,小 结,一、引入,1、实例:,退出,2、阅读提纲:,1)向量的定义,2)向量的表示方法,3)向量的有关概念,A、向量的模(向量的长度),B、零向量,C、单位向量,E、相等向量,D、平行向量,F、共线向量,返回主页,退出,二、新课,1、向量的定义:,向量是既有大小,又有方向的量.,返回,退出,2、向量的表示方法:,1)有向线段:,有向线段的三要素:起点、方向、长度.,注意字母的顺序是:起点在前,终点在后.,返回,退出,3)向量的大小:,用有向线段的长度表示,,就是向量的长度(或称模),2)向量的表示法:,几何表示法:用有向线段表示向量 有向线段的方向表示向量

2、的方向 有向线段的长度表示向量的大小.,、手写时写成带箭头的小写字母,如:,、印刷时用黑体小写字母表示,如:a,返回,退出,字母表示:、用有向线段的起点和终点的大写字母加箭头表示,如,4)向量与有向线段的区别:,由有向线段的三要素:“起点、方向、长度”可知,有向线段的起点是确定的。而由向量的定义可知,对于一个向量,只要不改变它的大小和方向,是可以任意平行移动的,与起点无关.,返回,退出,3、有关定义:,长度为0的向量应该叫做什么向量?如何表示?它有方向吗?它与实数0的意义相同吗?,问题1:,问题2:,长度等于1个单位长度的向量应该叫做什么向量?,答:应该叫做单位向量.,返回,退出,问题3:,如

3、图,这组方向相同或相反的非零向量之间,存在着什么关系?,答:平行关系.,平行向量:,方向相同或相反的非零向量.,因为零向量的方向不确定,所以规定零向量与任一向量平行.,返回,退出,例1:在梯形中找到平行向量.,练习,返回,退出,问题4:,这两个向量平行吗?,这两个向量相等吗?,答:相等;,平行;,不相等.,想一想?,返回,退出,相等向量:,长度相等且方向相同的向量。,规定:零向量与零向量相等。,问:单位向量是相等向量吗?,它们大小相等吗?,答:不一定;,相等。,注:两个向量相等与它们的位置无关。,返回,退出,我们知道:对于一个向量,只要不改变它的大小和方向,是可以任意平行移动的,与起点无关。这

4、就是常说的:自由向量。,例子,任一组平行向量都可以移到同一直线上,因此,平行向量也叫共线向量。,返回,退出,例2:如图设o是正六边形ABCDEF的中心,分别写出图中与向量(1)相等的向量;(2)共线的向量,解:,(1),(2),返回,退出,练习:已知D、E、F分别是 ABC各边的终点,分别写出图中与 相等的向量和共线的向量。,A,F,E,D,C,B,答:,返回,退出,讨论以下问题:(1)平行向量是否一定方向相同?(2)不相等的向量一定不平行吗?(3)与零向量相等的向量必定是什么向量?(4)与任何向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(6)两个非零

5、向量相等的充要条件是什么?(7)共线向量一定在同一直线上吗?,(不一定),(不一定),(零向量),(零向量),平行(或共线)向量,(大小相等,方向相同),(不一定),明是非,退出,1.在下列各种情形中,各向量的终点的集合各构成什么图形?(1)把所有的单位向量的起点平移到同一点P;(2)把平行于直线m上的所有单位向量的起点平移到直线m上的点;,单位圆,两点,思考:,退出,2.如图,B、C是线段AD的三等分点,分别以图中各点为起点和终点最多可以写多少个互不相等的非零向量?,返回主页,退出,这节课,我们学习了向量及其表示法,,小结,还知道有两个特殊向量:零向量与单位向量,,最后学习了向量间的两种关系,即平行向量(共线向量)和相等向量。,小经验:,零向量是一个特殊的向量,其长度为零但方向不确定,在解题中应引起重视。,返回主页,退出,作业:1.P93 习题2.1第1、3题,下节课讲要探讨的内容:向量的加法和减法.,返回主页,退出,千学不如一看 千看不如一练,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号