《GIS课程(空间数据处理).ppt》由会员分享,可在线阅读,更多相关《GIS课程(空间数据处理).ppt(136页珍藏版)》请在三一办公上搜索。
1、第三章 空间数据的处理,第一节 空间数据的变换第二节 空间数据结构的转换第三节 多元空间数据的融合 第四节 空间数据的压缩与重分类第五节 空间数据的内插方法 第六节拓扑关系的编辑,数据处理的内容,数据变换:指数据从一种数学状态到另一种数学状态的变换,包括几何纠正、投影转换和辐射纠正等,以解决空间数据的几何配准。数据重构:指数据从一种格式到另一种格式的转换,包括结构转换、格式转换、类型替换等,以解决空间数据在结构、格式和类型上的统一,实现多源数据和异构数据的联接与融合。数据提取:指对数据进行某种条件取舍,包括类型提取、窗口提取、空间内插等,以适应不同用户对数据的特定需求。,第一节 空间数据的变换
2、,空间数据的变换即空间坐标系的变换。实质:是建立两个平面点之间的一一对应关系,包括几何纠正和投影转换,它们是空间数据处理的基本内容之一。包括:几何纠正和投影转换。,一、几何纠正,几何纠正:是为了实现对数字化数据的坐标系转换和图纸变形误差的改正。几何纠正一般包括:仿射变换、相似变换、二次变换等功能。本教材主要介绍了仿射变换:,特点:1、直线变换后仍为直线。2、平行线变换后认为平行线3、不同方向上的长度比发生变化。,仿射变换,仿射变换可以对坐标数据在x和y方向进行不同比例的缩放、旋转、平移。,两层的数据不匹配,X,方向,Y,方向,平移,旋转,缩小,0,y,x,P(x,y),P(x,y),x,x=x
3、+xy=y+y,1、平移变换,y,P(x,y),0,x,P(X,Y),、旋转变换,X=xcos-y sin Y=xsin+y cos,X=x0+(x-x0)cos-(y-y0)sinY=y0+(x-x0)sin+(y-y0)cos,点可以通过对其P(x,y)坐标分别乘以各自的比例因子Sx和Sy来改变它们到坐标原点的距离。,x=xSxy=ySy,x=x0+(x-x0)Sx y=y0+(y-y0)Sy,、比例变换(图形缩放),仿射变换,转换坐标与理论坐标之差,法方程组,中位点误差,二、投影投影及其转换,(一)地图投影的基本原理,就是建立地球椭球面上的点的地理坐标(,)与平面上对应点的平面坐标(x,
4、y)之间的函数关系:,地图投影:投影变形,将不可展的地球椭球面展开成平面,并且不能有断裂,则图形必将在某些地方被拉伸,某些地方被压缩,故投影变形是不可避免的。长度变形 面积变形 角度变形,(二)投影类型,2.变形椭圆 取地面上一个微分圆(小到可忽略地球曲面的影响,把它当作平面看待),它投影到平面上通常会变为椭圆,通过对这个椭圆的研究,分析地图投影的变形状况。这种图解方法就叫变形椭圆。,为经线长度比;,为纬线长度比,微小圆变形椭圆,该方程证明:地球面上的微小圆,投影后通常会变为椭圆,即:以O为原点,以相交成q角的两共轭直径为坐标轴的椭圆方程式。,代入:X2+Y2=1,得,特别方向:变形椭圆上相互
5、垂直的两个方向及经向和纬向,长轴方向(极大值)a短轴方向(极小值)b经线方向 m;纬线方向 n,统称 主方向,据阿波隆尼定理,有m2+n2=a2+b2mnsinq=ab,在分析地图投影时,可借助对变形椭圆和微小圆的比较,说明变形的性质和大小。椭圆半径与小圆半径之比,可说明长度变形。很显然,长度变形随方向的变化而变化,其中有一个极大值,即椭圆长轴方向,一个极小值,即椭圆短轴方向。这两个方向是相互垂直的,称为主方向。椭圆面积与小圆面积之比,可说明面积变形。椭圆上两方向线的夹角和小圆上相应两方向线的夹角的比较,可说明角度变形。,变形椭圆与投影变形的关系 a=b:等角投影(投影面上某点的任意两方向线夹
6、角与椭球面上相应两线段夹角相等,即角度变形为零=0。制作航海图、洋流图、风向图)。ab=r*r:等积投影(投影面与椭球面上相应区域的面积相等,即面积变形为零。制作地质图、土壤图、行政区划图等)。其他:任意投影(投影图上,长度、面积和角度都有变形,它既不等角又不等积。其中,等距投影是在特定方向上没有长度变形的任意投影)。,按投影面的形状分为圆锥投影、圆柱投影和方位投影;按投影面与地球的相对位置关系分为正轴投影、斜轴投影、和横轴投影;按投影面和地球的空间逻辑关系分为相切和相割两类投影。,投影的分类,根据地图投影变形情况,地图比例尺分为:主比例尺:在投影面上没有变形的点或线上的比例尺。局部比例尺:在
7、投影面上有变形处的比例尺。,图解直线比例尺,图解复式比例尺,(三)地理信息系统常用的地图投影,1、高斯克吕格投影,高斯克吕格投影,高斯投影是一种横轴等角切椭圆柱投影,其条件为:1)中央经线和地球赤道投影成为直线且为投影的对 称轴;2)等角投影;3)中央经线上没有长度变形。由公式可分析出高斯投影变形具有以下特点:1)中央经线上无变形 2)中央经线上的长度比为1,其他任何点上的长度比大于1.3)同一条纬线上,离中央经线越远,变形越大;4)同一条经线上,纬度越低,变形越大;5)投影属于等角性质,面积比为长度比的平方。6)等变形线为平行于中央经线的直线。,2 墨卡托(Mercator)投影,特点:,1
8、、无角度变形,但面积变形较大。2、经线和纬线是两组相互垂直的平行直线,经线间隔相等,纬线间隔由赤道向两极逐渐扩大。3、保持方向和相对位置的正确。,属于等角正切圆柱投影。,墨卡托投影(正轴等角圆柱投影),墨卡托投影(正轴等角圆柱投影),墨卡托投影常用来制作航海图和航空图,3 UTM投影(横轴墨卡托投影),UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比 0.9996。(高斯-克吕格投影是“等角横切椭圆柱投影”),我国卫星地图、Google Map采用UTM投影。,4.兰勃特(Lambert)投影,兰勃特等角投影,在双标准
9、纬线下是一“等角正轴割圆锥投影”.,我国1:100万地形图采用了兰勃特投影。,采用双标准纬线,投影变形小而均匀特点:1、角度没有变形。2、两条标准纬线上没有任何变形。3、等变形线和纬度一致,同一条纬线上的变形处处相等。4、两标准纬线外侧为正变形,而两标准纬线之间为负变形。5、同一纬线上等经差的线段长度相等,两条纬线间的经纬度长度处处相等。,5.阿尔伯斯(Albers)投影,阿尔伯斯(Albers)投影是等面积正割圆锥投影,我国部分省图采用这种投影.,四、投影转换及其转换,主要研究从一种地图投影变为另一种地图投影的理论和方法。其实质是建立两平面之间点的一一对应关系。,x=f1(,)y=f2(,)
10、X=f3(,)Y=f4(,)X=F1(x,y)Y=F2(x,y),投影变换:,从投影转换的方式来分:,、正解变换 通过建立资料地图的投影坐标数据到目标地图投影坐标数据的严密或近似的解析关系式,直接由资料地图投影坐标数据x,y转换为目标投影的直角坐标X,Y。两个不同投影平面场上的点可对应写成:X=f1(x,y)Y=f2(x,y)式中f1,f2为定域内单值、连续的函数。,X=f1(x,y)Y=f2(x,y),投影转换的方式有两种:正解变换、反解变换,、反解变换将资料地图的投影坐标数据x,y反解出地理坐标,然后再将地理坐标代入到目标地图的投影坐标公式中,从而实现投影坐标的转换。对前后两种地图投影,可
11、分别有如下表达形式:x=f1(,)y=f2(,)X=f3(,)Y=f4(,)根据资料地图的投影公式求反解,对前一投影则有:=f1(x,y)=f2(x,y)代入目标地图的投影方程即有:X=f3f1(x,y),f2(x,y)Y=f4f1(x,y),f2(x,y)这就是地图投影反解变换的数学模型。,(,),(x,y),(X,Y),=f1(x,y)=f2(x,y),X=f3(,)Y=f4(,),X=f3f1(x,y),f2(x,y)Y=f4f1(x,y),f2(x,y),、反解变换,投影转换的方法:(1)解析变换:投影坐标(x、y)变换为地理坐标(B、L),再由地理坐标变换为另一种投影坐标(X、Y)。
12、(2)数字变换:一种投影的数字化坐标x、y变换到另一种投影的直角坐标X、Y。(3)解析-数值变换:当原数据投影公式不知道的情况下,反解出地理坐标,再由代入已知的新数据投影公式中进行计算。,第二节 空间数据结构的转换,第二节 空间数据结构的转换,应用矢量数据与栅格数据的一般原则:数据采集采用矢量数据结构,有利于保证空间实体的几何精度和拓朴特性的描述空间分析则主要采用栅格数据结构,有利于加快系统的运行速度和分析应用的进程 因此,在地理信息系统中,需要进行数据结构的转换。,一、由矢量向栅格的转换,矢量向栅格转换处理的根本任务:通过就是把点、线或面的矢量数据,转换成对应的栅格数据。这一过程称为栅格化。
13、栅格化首先要建立矢量数据的平面坐标系和栅格行列坐标系之间的对应关系。,0,1,2,3,4,5,6,7,1,2,3,4,5,6,7,8,9,8,9,X,Y,设矢量数据的一坐标点值为(x,y),转成栅格数据其行列值为(I,J)。表示矢量数据的X最小值和Y最小值,(一)点的转换,MinX,MinY=1000,1000,X,Y=4600,2300,X,Y,0 1 2 3 4 5 6 7 8 9,9 8 7 6 5 4 3 2 1 0,dx,dy=1000,1000,9 8 7 6 5 4 3 2 1 0,0 1 2 3 4 5 6 7 8 9,0 1 2 3 4 5 6 7 8 9,9 8 7 6 5
14、 4 3 2 1 0,点要素栅格化的过程,0 1 2 3 4 5 6 7 8 9,1)用点栅格化方法,实现直线的起点和终点坐标点栅格化 用以上点栅格计算公式分别求出矢量数据中直线端点a、b的栅格行列值(I1、J1)和(I2、J2)。2)求出直线段所对应的栅格单元的行列值范围 这里直线段ab所对应的栅格单元的行范围为(I2-I1);列范围为(J2-J1)。,(二)线的转换,3)如果行列数差I、J|,分两种情况考虑:(1)列数大于行数 J I,3)如果行列数差I、J|,分两种情况考虑:,(2)行数大于列数I J,(三)面的栅格化,1、基于弧段数据的栅格化方法,1,2,3,两种不同的方法:基于弧段数
15、据的栅格化和基于多边形数据的栅格化。,交点 列 左多边形 右多边形,1 0 0 1,1,2,3,2 3 1 2,3 6 2 3,4 9 3 0,主要针对实体结构的多边形矢量数据栅格化。就是在矢量表示的多边形边界内部的所有栅格上赋予相应的多边形属性值,从而形成栅格数据阵列。,转换方法边界代数算法内点填充法包含检验法,多边形数据的栅格化方法,2、基于多边形数据的栅格化方法,边界代数法基于积分求多边形的思想,通过简单的代数运算,实现多边形的矢栅转换。该算法简单可靠,被大量使用。假定沿边界前进方向Y值下降为下行,Y值上升为上行。沿着多边形实体的边界环绕多边形一圈当向上环绕时,把边界左边一行中所有的栅格
16、单元的数值都减去属性值。向下环绕时,把边界左边一行中所有的栅格单元的数值加属性值。,(1)边界代数算法,这样,多边形外部的栅格正负抵消,而多边形内部的栅格被赋予属性值。,首先按线的栅格化方法把多边形的边界栅格化,然后在多边形的内部找一个内点,从该点出发,向外填从多边形区域,直到边界为止。,(2)内点填充法,判别方法:由待判点对每个多边形的夹角和。如果夹角和为2,则该待判点属于此多边形,赋予多边形编号(纪录属性);如果积分值为0,则该待判点在此多边形外部。,1检验夹角法,(3)包含检验法,角度,方向,V0,角度为逆时针方向;V0,角度为顺时针方向,(a)夹角和为零,(b)夹角和360度,由待判点
17、向图外某点引射线,判断该射线与多边形所有边界相交的总次数。判别方法:如相交偶数次,则待判点在该多边形的外部,如相交奇数次,则待判点在该多边形内部。,2 铅垂线法,二、由栅格向矢量的转换,目的一是将扫描仪获取的图像栅格数据存入矢量形式的空间数据库;二是将栅格数据进行数据压缩,将面状栅格数据转换为由矢量数据表示的多边形边界;,栅格数据结构向矢量数据结构的转换又称为矢量化。,边界栅格数据,填充栅格数据,方法:根据数据文件的不同,分别采用不同的算法:(一)图像数据的转换方法(二)栅格数据的转换方法,对任意栅格点数据P,假设其坐标数据为(I,J),按下图所示坐标,将其转换为矢量数据,其中心点坐标(x,y
18、)计算公式为:,点的矢量化,9 8 7 6 5 4 3 2 1 0,0 1 2 3 4 5 6 7 8 9,图像数据是不同灰阶的影像,一般通过扫描仪按一定分辨率扫描采样,得到不同灰度值(0255)表示的数据。目前扫描仪的分辨率可达到0.0125mm,因此对一般粗度(例如0.1mm)的线条,其横断面扫描后平均也有8个像元,而矢量化的要求只能允许横断面保持一个栅格的宽度,因此需要进行二值化、细化和跟踪等矢量化步骤。,(一)基于图像数据的矢量化方法,具体步骤如下图,分3步:二值化、细化、更踪,(1)二值化,将用256级或128级灰度值G(i,j)量度的图像扫描数据的灰阶压缩到2个灰阶,即0和1两级。
19、具体方法:在最大与最小灰阶之间定义一个阈值T,则根据下式得到二值图:,具体过程举例,(2)细化,细化是消除线划横断面栅格数的差异,使得第一条线只保留代表其轴线的单个栅格的宽度。细化的方法可分为“剥皮法”和“骨架化”两大类。剥皮法剥皮法的实质:从曲线的边缘开始,每次剥掉等于一个栅格宽度的一层,直到最后留下彼此连通的、由单个栅格点组成的图形。解决办法:根据待剥栅格为中心的33栅格组合图来决定。,3X3栅格组合图,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,3
20、5,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,(3)跟踪 目的:将栅格数据转换为线段和闭合的线条,并以矢量形式存储线段的坐标。方法:从起始点开始,根据八邻域搜索下一个相邻点,记录其坐标,直到完成全部栅格数据的矢量化。,(二)栅格数据的矢量化方法,栅格数据的的矢量化常针对栅格数据中的多边形进行。步骤:1、首先搜索多边形弧段相交的节点位置。2、任选一个起始点,顺着栅格单元属性值不同的两个栅格单元之间进行多边形边界弧段的跟踪矢量化。3、将跟踪得到的弧段数据连接组织成多边形。,第一步 搜索多边形弧段相交的节点位置,第二步 跟踪弧段,第三步 构建多边
21、形,第三节 多源空间数据的融合,地理数据的多语义性、多时空性、多尺度性、获取手段的多样性、存储格式的不同以及数据模型与数据结构的差异等,导致了多源数据的产生,给数据的集成和信息共享带来了困难。因此,需要进行多源数据的融合。,遥感影像,DEM数据,行政界线,一、遥感与GIS数据的融合,遥感与GIS数据融合的具体方法表现为:(1)遥感影像与数字线画图(DLG)的融合。(2)遥感影像与数字地形模型(DEM)的融合(3)遥感图像与数字栅格图(DRG)的融合,借助遥感技术获得的信息具有周期动态性、信息丰富、获取效率高等优点。GIS具有空间数据管理和灵活的空间数据综合分析能力。两者的结合:有利于增强数据的
22、复合能力,改善GIS数据的及时性和可靠性,便于利用遥感影像辅助GIS空间数据的获取与更新,提高数据的使用率。,遥感影像与数字线画图(DLG)的融合,遥感影像与专题地图的复合,遥感影像与DEM复合,IRS-1C全色卫星影像(分辨率5.8m),同一地区的原始地形图(DRG),修测后的地形图(1:50000),遥感影像与数字栅格图(DRG)的融合,二、不同格式数据的融合,目前GIS软件系统使用的空间数据格式主要有:ESRI公司的ARCINFO Coverage、ArcShape Files、E00格式;Autodesk公司有DXF和DWG格式;MapInfo公司的TAB和MIF格式Intergrap
23、h公司的DGN格式,不同格式数据融合的几种主要方法:(1)基于转换器的融合(2)基于数据标准的数据融合(3)基于公共接口的数据融合(4)基于直接访问的数据融合,(1)基于转换器的数据融合,在这种模式下,数据转换一般通过交换格式进行。,(2)基于数据标准的数据融合,采用同一个标准来转换数据。采用一种空间数据的转换标准来实现多源GIS数据的融合。例如:美国国家空间数据协会(NSDI)制定了统一的空间数据格式规范SDTS(Spatial Data Transformation Standard),包括几何坐标、投影、拓扑关系、属性数据、数据字典等。国土资源部在国家标准地球空间数据交换格式(简称CNS
24、DTF)基础上制定了矢量数据交换格式VCT 2.0数据交换格式。,(3)基于公共接口的数据融合,又称为数据互操作模式,接口就是一种标准。各个系统通过接口相互联系.OGC(Open GIS Consortium)为数据互操作制定了统一的规范。根据OGC的规范,可以将提供数据源的软件成为数据服务器(Data Servers),使用数据的软件称为数据客户(Data Clients)。,(4)基于直接访问的数据融合,(一)空间数据压缩与综合的意义(1)数据采集系统获得的坐标数据量极其巨大(2)建立无级比例尺数据库,随着比例尺的缩小,需要对要素进行简化。数据压缩的定义 所谓数据压缩,即从所取得的数据集合
25、S中抽出一个子集A,使这个在规定的精度范围内最好地逼近原数据集合,而又取得尽可能大的压缩比。,一、空间数据的压缩,第四节 空间数据的压缩与重分类,曲线压缩的示意图(比例尺不断变小),压缩比,压缩比:表示信息载体减少的程度。以一条线实体为例,设数据集S中曲线的原来点序列为:A:A1,A2,An压缩处理后,获得新的子序列为:A:As1,As2,Asm,a值的大小,既与曲线的复杂程度、缩小倍数、精度要求、数字化取点的密度等因素有关,又与数据压缩技术有关。,m,1,a=,n,压缩比为:,基于矢量的压缩通常是对线状实体上点的数量的压缩,其中最常用的是:,(二)基于矢量的压缩,1、道格拉斯-佩克算法2、垂
26、距法 3、光栏法,1、道格拉斯佩克法(DouglasPeucker),基本思路与方法:1)对每一条曲线的首末点虚连一条直线,求所有点与直线的距离,并找出最大距离值dmax,用dmax与限差D相比;,dmax,2)若dmaxD,这条曲线上的中间点全部舍去;,3)若dmaxD,保留dmax对应的坐标点,并以该点为界,把曲线分为两部分,对这两部分重复使用该方法。,道格拉斯佩克法(DouglasPeucker),2、垂距法,垂距法的基本思路是:1)每次顺序取曲线上的三个点,计算中间点与其它两点连线的垂线距离d,并与限差D比较。,d,2)若dD,则中间点去掉,然后再依次取下三个点继续处理;,3)若dD,
27、则中间点保留,然后顺序取下三个点继续处理,直到这条线结束。,3、光栏法,光栏法的基本思想是:定义一个扇形区域,通过判断曲线上的点在扇形外还是在扇形内,确定保留还是舍去。设曲线上的点列为pi,i1,2,n,光栏口径为d,可根据压缩量的大小自己定义,则光栏法的实施步骤可描述为:,1)连接p1和p2点,过p2点作一条垂直于p1p2的直线,在该垂线上取两点a1和a2,使a1p2a2p2d2,此时a1和a2为“光栏”边界点,p1与a1、p1与a2的连线为以p1为顶点的扇形的两条边,这就定义了一个扇形(这个扇形的口朝向曲线的前进方向,边长是任意的)。通过p1并在扇形内的所有直线都具有这种性质,即p1p2上
28、各点到这些直线的垂距都不大于d/2。,2)若p3点在扇形内,则舍去p2点。然后连接p1和p3,过p3作p1p3的垂线,该垂线与前面定义的扇形边交于c1和c2。在垂线上找到b1和b2点,使p3b1p3b2d2,若b1或b2点落在原扇形外面,则用c1或c2取代(图中由c2取代b2)。此时用p1b1和p1c2定义一个新的扇形,这当然是口径(b1c2)缩小了的“光栏”。,p1,a1,a2,c1,c2,b2,b1,p2,p3,p4,pn,d/2,d/2,d/2,d/2,3)检查下一节点,若该点在新扇形内,则重复第(2)步;直到发现有一个节点在最新定义的扇形外为止。4)当发现在扇形外的节点,如图中的p4,
29、此时保留p3点,以p3作为新起点,重复1)3)。如此继续下去,直到整个点列检测完为止。所有被保留的节点(含首、末点),顺序地构成了简化后的新点列。,几种方法的比较,道格拉斯普克法的压缩算法较好,但必须在对整条曲线数字化完成后才能进行,且计算量较大;光栏法的压缩算法也很好,并且可在数字化时实时处理,每次判断下一个数字化的点,且计算量较小;垂距法算法简单,速度快,但有时会将曲线的夹角去掉。,(三)栅格数据的压缩,栅格数据压缩的概念影像数据压缩的可能性是因为像素之间存在着较强的相关性:从统计观点上看,某像素的灰度值总是和周围其他像素的灰度值有某种关系,应用编码方法提取并减少这种相关牲,便可实现影像数
30、据的压缩。从信息论观点来看,影像压缩就是减少影像信息中无用的冗余信息。压缩编码策略(参考第二章)游程编码四叉树编码,二、空间数据的重分类,重分类的处理:当属性数据发生变化后,势必有一些图斑与相邻图斑的属性一致,这时就应该将这些图斑合并,即去掉公共边。,当进行特定的数据分析时,需要先对数据库中提取的数据作属性的重新分类和空间图形的化简,以构成数据新的使用形式。,语义分辨率高,语义分辨率降低,语义分辨率继续降低,土地利用,耕地,园地,林地,牧草地,果园,桑园,菜园,橡胶园,地形坡度数据的重分类,第五节 空间数据的内插方法,空间数据的内插:通过已知点或分区的数据,建立一种函数关系,使关系式最好地逼近
31、这些已知的空间数据,据此推求任意点或任意多边形分区范围的值,这种方法称为空间数据的内插。根据已知点和已知多边形分区数据的不同,空间数据内插的方法可分为:点的内插区域的内插应用:等值线自动制图、DTM建立、区域现象的相关分析与比较研究。,一、点的内插,点的内插:是用于研究具有连续变化特征现象(例如地面高程等)的数值内插方法。内插的理论基础在于对空间相关性的认知。空间相关性即对地理上连续分布的现象,相邻点之间关联性强,较远的点之间关联性弱或者无关。,地面高程模型的建立一般需要经过三个过程:数据取样 指数据点的选取和坐标的确定。数据内插 是以数据点作为控制基础,用某一数学模型来模拟地表面,进行内插计
32、算。数据精度分析 对模型的验证。,(一)数据取样,取样基础:等高线图取样方案:随机取样方案:按地性线(山脊线、山谷线、坡度变换线),或沿等高线,或沿断面线布设取样点。将数据点选择在地性线坡度改变处,或沿等高线在方向改变的地点,即根据地形变化取点。这样,数据落在地形特征点上。,确定内插间距(判断格网密度)与插值计算,格网取样时,设拟定的取样点为1、2、3,相应的为h1、h2、h3,取等距离间隔为单位,则中间点的高程为:,这里应在数字地形模型精度要求的限差之内,否则,要缩短格网间距。地形变化明显的地方,增加地形特征点为数据点。检查点位与高程值的匹配,然后进行插值运算。,格网取样时,(二)数据的内插
33、,插值运算:选择一个合理的数学模型,利用已知点上的信息求出函数的待定系数,建立插值运算模型。使用整体内插存在很多问题,一般采用:1、局部分块内插法 2、逐点内插法,线性内插原理 数据点为地形特征点时,地面模型以三角网建立。可认为分块内插区的地表面为一平面,按直线比例内插待定点的高程。一般形式 设待定点高程为zp,则线性内插函数为 用最靠近待定点的3个数据点坐标值代入上式,求出待定系数a0、a1、a2。给定待定点的平面坐标xp、yp后,可求出内插高程zp,1、分块内插法,分块内插法:将整个内插空间划分成若干分块,并对各块求出各自的曲面函数来刻画曲面形态。问题:解决各块的连续性。分块:线性内插法、
34、双线性多项式内插、二元样条函数内插法。,根据三个控制点,求出三个参数。具体求解为:,线性内插原理,双线性多项式内插,一般用于规则分布的数据模型。方法:使用最靠近内插点的四个已知数据点组成一个四边形,确定一个双线性多项式来内插其中的高程。,将内插点周围的4个数据点的数据值带入多项式,即可解算出系数a0、a1、a2、a3。,二元样条函数内插法(双三次多项式),原理 在分块插值区用双三次多项式(样条函数)模拟地面。则待定点高程为:,由于有16个待定参数,而分块格元只有4个节点信息可用,因此,要用各数据点x方向上的斜率R、y方向上的斜率S和曲面的扭矩T,一起构成16个方程,求出上面的16个待定参数。,
35、对于数据点A,x方向的斜率,y方向的斜率,曲面的扭矩,4个数据点A、B、C、D列出Z、R、S和T的式子写成,如在分块格网ABCD内插nn个正方形待定点,则(313)中的,移动拟合法,对每一个待定点P,用一个多项式曲面拟合地表面时,从而计算出该点的高程值。1、以待定点P为圆心,以R为半径,读取该圆内的数据点坐标与高程值。2、选择一种定义函数(如二次多项式),将读取数据点的坐标与高程值代入该定义函数,求出其待定系数。3、列出误差方程,用最小二乘法平差。,2、逐点内插法,以插值点位中心,定义一个局部函数去拟合周围的数据点,数据点的范围随插值点的位置的变化而变化。因此又称移动曲面法。,移动拟合法的一般
36、形式,设取二次多项式来拟合,则待求点的高程的一般形式为:zp=Ax2+Bxy+Cy2+Dx+Ey+F,考虑两方面的问题1、考虑范围2、考虑点数,加权平均法,使用搜索圆寻找附近数据点的方法和移动拟合法相同,但在计算待插值点的高程时,使用加权平均值代替误差方程求解出的曲面函数。,加权平均内插的结果随使用的函数及其参数、采样点的分布、窗口的大小等的不同而变化。通常使用的采样点数为68点。对于不规则分布的采样点需要不断地改变窗口的大小、形状和方向,以获取一定数量的采样点。,克里金法(Kriging),克里金法是地统计学(Geostatistics)的基础工具。Kriging方法是基于这样的假设:被插值
37、的某一要素(如地形要素)可以被当做一个区域化的变量来看待。,Kriging方法是建立在一个预先定义的协方差模型的基础上,通过线性回归方法把估计值的方差最小化的一种插值方法。分三种:普通Kriging、简单Kriging、通用Kriging。,所谓区域化的变量就是介于完全随机的变量和完全确定的变量之间的一种变量,它随所在区域位置的改变而连续的变化,以此,彼此离得近的点之间有某种程度上的空间相关性,而相隔比较远的点之间在统计上看是相互独立无关的。,克里金法(Kriging),1、普通Kriging,步骤:1、利用那些将要用来插值的离散点集合建立一个变量图。变量图通常包括两个部分:一个实验获得的变量
38、图;一个是模型变量图。,离散的高程点,Kriging插值的半方差图,克里金法(Kriging),步骤:2、利用模型变量图计算Kriging方法的权值。在普通Kriging方法运用的基本公式如下:,例如,利用P点周围的三个点P1、P2、P3,计算权重。,3、,克里金法(Kriging),2、简单Kriging,与普通Kriging相似,区别是没有把方程w1+w2+w3=1加入方程组。,特点:简单Kriging不如普通Kriging精确,但它会产生更加平滑的结果。,3、通用Kriging,Kriging方法带着残差执行,插值的残差加到漂移上来计算估计值。使用一个偏差的这种方式通常被称为“通用Kri
39、ging”方法。,插值法举例,加权平均法插值结果,二元样条函数内插结果,Kriging内插结果,(三)数据精度分析,在研究区内随机选取n个数据点,设这些点的图上高程为zi,其对应的内插值为,它们之差用下式表示:,其算术平均值为:,标准偏差为:,根据高程数据精度的评价标准,允许误差(z)应小于原始数据比例尺等高距的13。若符合该条件,即认为所建立的数字高程模型满足精度要求。,二、区域的内插,区域的内插:是研究根据一组分区的已知数据来推求同一地区另一组分区未知数据的内插方法。源区:已知数据的分区。目标区:需要内插的另一组分区。区域内插的二种基本方法:叠置法和比重法。,(一)叠置法,将目标区叠置在源
40、区上,先确定两者面积的交集ats,然后用下式计算出目标区各分区t的内插值vt。,式中:t为目标各个分区的序号;s为源区各个分区的序号;Us为分区s的已知统计数据;ats为t区与s区相交的面积;s为s区的面积。,A,B,C,源区,1,2,3,目标区,例:,v1=353/7+302/6=25v2=354/7+101/3=23.3v3=304/6+102/3=26.7,如果Us表示的是密度数据,则vt由下式决定:,其中rt为目标分区单元t的面积。,A,B,C,源区,1,2,3,目标区,v1=(403+202)/5=32v2=(404+101)/5=34v3=(204+102)/6=16.7,如果区域
41、统计数据为比值,例如男性占总人口的百分比,则vt由下式决定:,式中:Us=Us1/Us2,Us1和Us2为某一现象局部与整体的绝对统计数据,(二)比重法,比重法:是根据平滑密度函数的原理,将源区的统计数据从同质性质改变为非同质性质。而非同质性代表着一般社会经济现象的普遍特点。,(1)在源区上叠置一张网格(2)读取各个格网点的平均值(图34a)(3)计算相邻4格网点的平均值(图34b)(4)各个分区的格网点值相加,得到Us,计算系数pUs/Us,并将各格点值乘以p,得到调整后的各个分区的格网点值(图34c)(5)依此过程继续下去,直到Us与Us的值很相近,或者相应分区的格网点值比较一致时(图34d),便可计算目标区的内插值。如区1的内插值 v15.5+5.3+5.5+5.2+4.5=26,本章作业:,P108:1,3,8,本章结束,