《GIS课程教案(第五章空间数据处理.ppt》由会员分享,可在线阅读,更多相关《GIS课程教案(第五章空间数据处理.ppt(133页珍藏版)》请在三一办公上搜索。
1、,第五章 空间数据的处理,5-1 坐标变换,5-2 图形编辑,5-3 拓扑关系的自动建立,5-4 图形的裁剪、合并 与图幅接边,5-5 空间插值,5-6 数据压缩与光滑,5-7 空间数据格式转换,5-0空间数据的地理参照系和控制基础,一、地理空间(Geographic Space)的定义,指物质、能量、信息的存在形式在形态、结构过程、功能关系上的分布方式和格局及其在时间上的延续,具体包括地球上大气圈、水圈、生物圈、岩石圈和土壤圈交互作用的区域。,地理空间具体被描述为:1)绝对空间,具有属性描述的空间位置的集合,一系列坐标值组成。2)相对空间,是具有空间属性特征的实体的集合,由不同实体之间的空间
2、关系组成。,返回,二、地理空间的数学建构-如何建立地球表面的几何模型,包括海洋底部、高山、高原在内的固体地球表面,起伏不定,难以用一个简洁的数学式描述。,第四章 空间数据的采集和质量控制,4-2 地理参照系和控制基础,1、最自然的面:,2、相对抽象的面,即大地水准面,地球表面72%被海水覆盖,假设一个当海水处于完全静止的平衡状态时从海平面延伸到所有大陆下部,而与地球重力方向处处正交的一个连续、闭合的水准面。可用水准仪完成地球自然表面上任一点的高程测量。但地球的重力方向处处不同,处处与重力方向垂直的大地水准面显然不可能是一个十分规则的表面,且不能用简单的数学公式来表达,因此,大地水准面不能作为测
3、量成果的计算面。,为了测量成果计算的需要,选用一个同大地体相近的、可以用数学方法来表达的旋转椭球来代替地球-三轴椭球体。,3、椭球体模型,返回,三、地理参照系,1、经纬度坐标系(地理坐标)对空间定位有利,但难以进行距离、方向、面积量算。,2、笛卡儿平面坐标系 便于量算和进一步的空间数据处理和分析。3、高程系统描述空间点在垂直高度上的特性-高程由高程基准面起算的地面点的高度。,地图投影,“1956年黄海高程系”,“1985年国家高程基准”,第四章 空间数据的采集和质量控制,4-2 地理参照系和控制基础,椭球体模型,返回,四、GIS的地理基础-控制基础,各种GIS的数据源、服务目的和各自特征可以不
4、同,但均有自身统一的地理基础。,第四章 空间数据的采集和质量控制,4-2 地理参照系和控制基础,3、统一的地图投影系统的意义:为地理信息系统选择和设计一种或几种适用的地图投影系统和网格坐标系统,为各种地理信息的输入、输出及匹配处理提供一个统一的定位框架,使各种来源的地理信息和数据能够具有共同的地理基础,并在这个基础上反映出它们的地理位置和地理关系特征。,2、投影与坐标系:每一种投影都与一个坐标系统相联系。坐标系统是一套说明某一物体地理坐标的参数,参数之一为投影。投影关系着如何将图形物体显示于平面上,而坐标系统则显示出地形地物所在的相对位置。,1、地理基础的内容,返回,五、地图投影,1、GIS与
5、地图投影关系,第四章 空间数据的采集和质量控制,4-2 地理参照系和控制基础,2、GIS中地图投影设计与配置的一般原则,1)所配置的投影系统应与相应比例尺的国家基本图(基本比例尺地形图,基本省区图或国家大地图集)投影系统一致。2)系统一般只考虑至多采用两种投影系统,一种应用于大比例尺的数据处理与输出、输入,另一种服务于小比例尺。3)所用投影以等角投影为宜。4)所用投影应能与网格坐标系统相适应,即所采用的网格系统(特别是一级网格)在投影带中应保持完整。,第四章 空间数据的采集和质量控制,4-2 地理参照系和控制基础,3、我国GIS常用的地图投影配置,采用与我国基本图系列一致的地图投影系统:我国常
6、用的地图投影的情况为:1)、我国基本比例尺地形图(1:100万、1:50万、1:25万、1:10万、1:5万、1:2.5、1:1万、1:5000),除1:100万外均采用高斯克吕格投影为地理基础;2)、我国1:100万地形图采用了Lambert投影,其分幅原则与国际地理学会规定的全球统一使用的国际百万分之一地图投影保持一致。3)、我国大部分省区图以及大多数这一比例尺的地图也多采用Lambert投影和属于同一投影系统的Albers投影(正轴等面积割圆锥投影);4)、Lambert投影中,地球表面上两点间的最短距离(即大圆航线)表现为近于直线,这有利于地理信息系统中空间分析量度的正确实施。,第四章
7、 空间数据的采集和质量控制,4-2 地理参照系和控制基础,5-01 空间数据的分类和编码,第四章 空间数据的采集和质量控制,分层,区域分块,空间数据库,GIS应用,大范围 地理区域,合理组织,面向对象组织,矩形分块,经纬度分块,一、空间数据的组织,返回,二、地理数据的分层,空间数据可按某种属性特征形成一个数据层,通常称为图层(Coverage)。1、空间数据分层方法:1)专题分层 每个图层对应一个专题,包含某一种或某一类数据。如地貌层、水系层、道路层、居民地层等。2)时间序列分层即把不同时间或不同时期的数据作为一个数据层。3)地面垂直高度分层把不同时间或不同时期的数据作为一个数据层。,第四章
8、空间数据的采集和质量控制,专题分层,时间序列,4-3 空间数据的分类和编码,2、空间数据分层的目的,便于空间数据的管理、查询、显示、分析等。1)空间数据分为若干数据层后,对所有空间数据的管理就简化为对各数据层的管理,而一个数据层的数据结构往往比较单一,数据量也相对较小,管理起来就相对简单;2)对分层的空间数据进行查询时,不需要对所有空间数据进行查询,只需要对某一层空间数据进行查询即可,因而可加快查询速度;3)分层后的空间数据,由于便于任意选择需要显示的图层,因而增加了图形显示的灵活性;4)对不同数据层进行叠加,可进行各种目的的空间分析。,第四章 空间数据的采集和质量控制,4-3 空间数据的分类
9、和编码,返回,三、空间数据的分类与编码,第四章 空间数据的采集和质量控制,分类、编码,点、线、面特征码、坐标,信息世界,4-3 空间数据的分类和编码,1、属性数据编码,第四章 空间数据的采集和质量控制,4-3 空间数据的分类和编码,在属性数据中,有一部分是与几何数据的表示密切有关的。例如,道路的等级、类型等,决定着道路符号的形状、色彩、尺寸等。在GIS中,通常把这部分属性数据用编码的形式表示,并与几何数据一起管理起来。编码:是指确定属性数据的代码的方法和过程。代码:是一个或一组有序的易于被计算机或人识别与处理的符号,是计算机鉴别和查找信息的主要依据和手段。编码的直接产物就是代码,而分类分级则是
10、编码的基础。,2、分类编码的原则,分类是将具有共同的属性或特征的事物或现象归并在一起,而把不同属性或特征的事物或现象分开的过程。分类是人类思维所固有的一种活动,是认识事物的一种方法。分类的基本原则是:科学性、系统性、可扩性、实用性、兼容性、稳定性、不受比例尺限制、灵活性,第四章 空间数据的采集和质量控制,4-3 空间数据的分类和编码,3、分类码和标识码,第四章 空间数据的采集和质量控制,4-3 空间数据的分类和编码,资料来源于张超主编的地理信息系统实习教程所配光盘,4、分类码示例,第四章 空间数据的采集和质量控制,4-3 空间数据的分类和编码,资料来源于张超主编的地理信息系统实习教程所配光盘,
11、5、标识码示例,第四章 空间数据的采集和质量控制,4-3 空间数据的分类和编码,资料来源于张超主编的地理信息系统实习教程所配光盘,5-02空间数据标准目录,第四章 空间数据的采集和质量控制,5-02 空间数据标准-数据共享,5-02 空间数据标准,一、概述,二、空间数据分类标准,三、空间数据交换标准,四、我国空间数据交换格式,五、GIS空间元数据,六、空间数据的互操作,七、Open GIS规范,5-02 空间数据标准-数据共享,一、概述1、目前影响数据共享的因素体制上:行业数据保密政策。技术上:不同系统对空间数据采用的数据结构和数据格式不同。网络化程度:资源共享是网络主要功能之一,用户可共享网
12、络分散在不同地点的各种软硬件。,第五章 空间数据处理,3、空间数据标准的状况:如果只针对某一地理信息系统设计空间数据标准,并不困难;如果所建立的空间数据标准能为大家所承认,为大多数系统所接受和使用,就比较复杂和困难。,目前,我国已有一些与GIS有关的国家标准,内容涉及数据编码、数据格式、地理格网、数据采集技术规范、数据记录格式等。,2、空间数据标准:是指空间数据的名称、代码、分类编码、数据类型、精度、单位、格式等的标准形式。每个地理信息系统都必须具有相应的空间数据标准。,返回,二、空间数据分类标准,1、原则:1)遵循已有的国家标准,以利于全国范围内的数据共享。2)遵循国务院有关部委以及军队正在
13、使用的数据标准。3)遵循各领域中普遍使用和认同的数据标准。4)当各种数据标准相互矛盾时,应遵循由上而下的原则进行处理。5)制定新的数据标准时,应尽可能参考同类标准。,第四章 空间数据的采集和质量控制,4.6 空间数据标准-数据共享,2、目前我国已有的与GIS有关的关于空间数据分类的国家标准:GB2260-95 中华人民共和国行政区划代码GB13923-92 国土基础信息数据分类与代码GB11708-89 公路桥梁命名和编码规则GB14804-93 1:500、1:1000、1:2000地形要素分类与代码等等。,返回,三、空间数据交换标准,1、外部数据交换标准,第四章 空间数据的采集和质量控制,
14、4.6 空间数据标准-数据共享,特点:自动化程度不高,速度较慢等,但它可解决不同GIS之间的数据转换问题。它仍然是实现数据共享的主流方式。,GIS 1数据格式,外部数据交换格式标准,数据转换,数据转换,GIS 2数据格式,2、空间数据互操作协议,特点:比外部数据交换标准方便,但由于各种软件存储和处理空间数据的方式不同,空间数据的互操作函数又不可能很庞大,因此往往不能解决所有问题。,第四章 空间数据的采集和质量控制,4.6 空间数据标准-数据共享,GIS 1,操纵空间数据的API,直接调用,直接调用,GIS 2,3、空间数据共享平台,服务器存放空间数据采用客户机/服务器体系结构,各种GIS通过一
15、个公共的平台在服务器存取所有数据,以避免数据的不一致性。特点:思路较好,但现有的GIS软件各有自己的底层,要统一平台目前难以实现。,GIS 1,服务器存放空间数据,C/S平台,C/S平台,GIS 2,操纵,操纵,4、统一数据库接口,特点:这种方式的前提,首先要求对现实世界进行统一的面向对象的数据理解,这不易实现的。目前:外部数据交换标准仍是实现数据共享的主流方式。,第四章 空间数据的采集和质量控制,4.6 空间数据标准-数据共享,GIS 1,空间数据库接口,转换程序,转换程序,GIS 2,在对空间数据模型有共同理解的基础上,各系统开发专门的双向转换程序,将本系统的内部数据结构转换成统一数据库的
16、接口。,我国已发布了GIS的外部数据交换格式,包括矢量数据交换格式、栅格数据交换格式和数字高程模型交换格式标准。,四、我国空间数据交换格式,返回,五、GIS空间元数据(Geospatial Metadata),1、空间元数据的定义和作用1)定义:地理的数据和信息资源的描述性信息。它通过对地理空间数据的内容、质量、条件和其他特征进行描述与说明,以便人们有效地定位、评价、比较、获取和使用与地理相关的数据。2)作用:(a)用来组织和管理空间信息,并挖掘空间信息资源。(b)帮助数据使用者查询所需空间信息。(c)组织和维护一个机构对数据的投资。(d)用来建立空间信息的数据目录和数据交换中心。(e)提供数
17、据转换方面的信息。,第四章 空间数据的采集和质量控制,4.6 空间数据标准-数据共享,2、空间元数据的分类,1)高层元数据(数据集系列Metadata),描述整个数据集的元数据,包括数据集区域采样原则,数据库的有效期,数据的时间跨度、分辨率以及方法等。是用户用于概括性查询数据集的主要内容。2)中层元数据(数据集Metadata),既可以作为数据集系列Metadata的组成部分,也可以作为后面数据集属性以及要素等内容的父Metadata数据集系列。全面反映数据集的内容。3)底层元数据(要素、属性的类型和实例Metadata),包括最近更新日期,位置纲量,存在问题标识(如数据的丢失原因),数据处理
18、过程等。是元数据体系中详细描述现实世界的重要部分。,第四章 空间数据的采集和质量控制,4.6 空间数据标准-数据共享,3、空间元数据的内容,对空间元数据所要描述的一般内容进行层次化和范式化,指定出可供参考与遵循的空间元数据标准的内容框架。,第四章 空间数据的采集和质量控制,4.6 空间数据标准-数据共享,第一层是目录层,主要用于对数据集信息进行宏观描述,适合在数字地球的国家级空间信息交换中心或区域以及全球范围内管理和查询空间信息时使用。第二层是空间元数据标准的主体,由八个基本内容部分和四个引用部分组成。,4、元数据的获取,数据收集后,根据需要产生的,包括数据处理过程描述、数据的利用情况、数据质
19、量评估、数据集大小、数据存放路径等。,第四章 空间数据的采集和质量控制,4.6 空间数据标准-数据共享,数据收集前,得到的是根据要建设的数据库的内容而设计的元数据,包括数据类型、数据覆盖范围、使用仪器说明、数据变量表示、数据收集方法、数据时间、数据潜在利用等。,1)三阶段:,数据收集中,随数据的形成同步产生的元数据,例如在测量海洋要素数据时,测点的水平和垂直位置、深度、温度等是同时得到的。,2)获取方法:,键盘输入,关联法,测量法,计算法,推理法,返回,5、现有的空间元数据标准,六、空间数据的互操作,第四章 空间数据的采集和质量控制,4.6 空间数据标准-数据共享,互操作地理信息处理,是指数字
20、系统的这些能力:1)自由地交换所有关于地球的信息,即所有关于地表上的、空中的、地球表面以下的对象的信息。2)通过网络协作运行能够操作这些信息的软件。概括为自由交换地理空间信息及协作运行空间信息处理的软件。,互相通信,互相协作,实体 1,数据,功能,实体 2,数据,功能,互操作,1、互操作含义 指异构环境下两个或两个以上的实体,尽管它们实现的语言、执行的环境和基于的模型不同,但它们可以互相通信和协作,以完成某一特定任务,这些实体包括程序、对象、系统运行环境等。,2、GIS互操作类型1)软件的互操作,强调软件功能块间的相互调用;2)数据的互操作,强调数据集之间相互透明的访问;3)语义湖操作,强调信
21、息的共享,在一定语义约束下(对地理现象共同的理解下)的互操作。,3、GIS 互操作问题,第四章 空间数据的采集和质量控制,4.6 空间数据标准-数据共享,目前,所建立的GIS均被认为是信息孤岛,不同系统之间存在互操作问题,因为:1)没有统一的标准,各自采用不同的数据格式、数据存储和数据处理方法;2)系统的开发均建立在具体、相互独立和封闭的平台,且不同应用部门对地理现象有不同的理解,导致对地理信息有不同的定义,使得不同应用系统之间在共同协作时无法进行信息交流和数据共享。,互相通信,互相协作,GIS 1,数据,功能,GIS 2,数据,功能,互操作,?,5、GIS互操作现状,目前,主要有两种方法初步
22、实现互操作:1)OPEN GIS规范,通过规定统一的系统设计和开发软件工具的框架,OGC(Open GIS Consortium)OPEN GIS 协会为实现GIS间的互操作制定了OPEN GIS规范。2)构件(组件)技术,构件(组件)技术也是实现互操作的可行方法。程序设计中的组件技术,可以在许多不同平台下使用,受之启发,可将GIS某功能包装成独立的组件,使之可以在不同的系统环境下调用。这样可实现系统功能的相互调用。,第四章 空间数据的采集和质量控制,4.6 空间数据标准-数据共享,4、急需实现异构GIS间的互操作1)解决基础数据的共享问题的需要;2)GIS应用趋向多学科综合和集成化;3)GI
23、S走向社会化的需要;4)也是Internet GIS发展的需要。,返回,七、Open GIS规范,1、含义:OGIS,也叫开放式地理数据交换规程,它是由开放地理信息系统协会(Open GIS Consortium)制定的一系列开放标准和接口。Open GIS规范是OGC规范的最高层次,是利用软件统一地表示地理数据和地理处理的规范系统。2、目的:在传统GIS软件与高带宽的异构地学处理环境中架起一座桥梁,具体通过信息基础设施,把地理空间数据和地理处理资源集成到主流的计算机技术中,促使可互操作的商业地理信息处理软件的广泛应用。3、特点:1)是一种统一的规范,使用户和开发者能进行互操作;2)能克服烦琐
24、的批处理及导入、导出障碍,在分布操作系统异构数据库环境下获取数据及数据处理功能资源;3)由于Open GIS独立于具体平台,它只能是抽象层的概念描述,而不是具体的实现。,第四章 空间数据的采集和质量控制,4.6 空间数据标准-数据共享,4、多数据格式是多源空间数据集成的瓶颈,是OpenGIS出现的基础,1)多语义性 由于地理系统的研究对象的多种类特点决定了地理信息的多语义性。一个GIS研究的决不会是一个孤立的地理语义,但不同系统解决问题的侧重点也有所不同,因而会存在语义分异问题。2)多时空性和多尺度一个GIS系统中的数据源既有同一时间不同空间的数据系列;也有同一空间不同时间序列的数据。还会根据
25、系统需要而采用不同尺度对地理空间进行表达,不同的观察尺度具有不同的比例尺和不同的精度。3)获取手段多源性 获取地理空间的数据的方法有多种多样,包括来自现有系统、图表、遥感手段、GPS手段、统计调查、实地勘测等。4)存储格式多源性 图形数据又可以分为栅格格式和矢量格式两类。传统的GIS一般将属性数据放在关系数据库中,而将图形数据存放在专门的图形文件中。不同的GIS软件采取不同的文件存储格式。,第四章 空间数据的采集和质量控制,4.6 空间数据标准-数据共享,5、OpenGIS规范的作用,第四章 空间数据的采集和质量控制,4.6 空间数据标准-数据共享,通过OpenGIS规范把商业部门、集成部门、
26、用户、研究人员、数据提供商等连接到一起,通过必要的软件工具和通信技术,为各种用户提供对地理信息的共享和互操作。,6、互操作地理信息的工作方式(OGIS框架),如何实现OpenGIS规范,OpenGIS规范并没有提出具体的标准实施模式,其框架主要由三部分组成1)开放的地理数据模型(Open Geodata Model,OGM)包含认可的类型和结构集合(将地理现实抽象为实体(特征)和现象(层),通过这一集合,可表示任何地理模型。2)OGIS服务模型(Open Service Model,OSM)定义地学数据服务的对象模型,由一组相互可操作的软件构件集组成,为对特征的访问提供对象管理、获取、操作、交
27、换等服务设施。3)信息群模型(Information Communities Model)信息群指共享数据的用户群,可以是数据提供者、使用者。不同用户对数据理解不同,引起语义上交流障碍。信息群模型,主要任务是解决具有统一的OGM(开放地理数据模型)及语义描述机制的一个信息部门内部以及不同OGM及语义描述的信息部门之间的数据共享问题。采用的主要方法是语义转换,使具有不同特征类定义以及语义模式的信息用户群之间实现语义的互操作。,第四章 空间数据的采集和质量控制,4.6 空间数据标准-数据共享,第五章 空间数据的处理,数据处理的概念 数据处理的内容 数据处理的意义,对采集的各种数据,按照不同的方式方
28、法对数据进行编辑运算,清除数据冗余,弥补数据缺失,形成符合用户要求的数据文件格式,数据处理的概念 数据处理的内容 数据处理的意义,数踞编辑数据压缩数据变换数据格式转换空间数据内插边沿匹配数据提取,数据处理的概念 数据处理的内容 数据处理的意义,空间数据有序化检验数据质量实现数据共享提高资源利用效果,一、图幅数据的坐标变换,1、比例尺变换:乘系数2、变形误差改正:通过控制点利用高次变换、二次变换和仿射变换加以改正3、坐标旋转和平移 即数字化坐标变换,利用仿射变换改正。4、投影变换:三种方法。,第五章 空间数据的处理,5-1 坐标变换,几何变换,返回,平移变换,x=x+xy=y+y,1、空间数据处
29、理的方法-平面坐标变换,旋转变换,x=xcos-y sin y=xsin+y cos,x=x0+(x-x0)cos-(y-y0)siny=y0+(x-x0)sin+(y-y0)cos,1、空间数据处理的方法-平面坐标变换,比例变换(图形缩放),点可以通过对其P(x,y)坐标分别乘以各自的比例因子Sx和Sy来改变它们到坐标原点的距离。,x=xSxy=ySy,x=x0+(x-x0)Sx y=y0+(y-y0)Sy,1、空间数据处理的方法-平面坐标变换,二、几何纠正,其中A、B代表二次以上高次项之和。上式是高次曲线方程,符合上式的变换称为高次变换。式中有12个未知数,所以在进行高次变换时,需要有6对
30、以上控制点的坐标和理论值,才能求出待定系数。,第五章 空间数据的处理,5-1 坐标变换,1、高次变换,2、二次变换 当不考虑高次变换方程中的A和B时,则变成二次曲线方程,称为二次变换。二次变换适用于原图有非线性变形的情况,至少需要5对控制点的坐标及其理论值,才能解算待定系数。,3、仿射变换,实质是两坐标系间的旋转变换。设图纸变形引起x,y两个方向比例尺不同,当x,y比例尺相同时,为相似变换。,第五章 空间数据的处理,5-1 坐标变换,特性:直线变换后仍为直线;平行线变换后仍为平行线;不同方向上的长度比发生变化。求解上式中的6个未知数,需不在一直线上的3对已知控制点,由于误差,需多余观测,所以,
31、用于图幅定向至少需要四对控制点。,返回,图幅变形校正最常用的方法是六系数的线性变换法(Sprhsky,1987;黄杏元等,1989):,上式中x,y为数字化的坐标,X,Y为转换后的坐标,A0,A1,A2,B0,B1,B2为六个未知系数。设有n个控制点(n2),可用最小二乘法原理来计算这六个未知数:上式中xi,yi为第i个控制点的数字化坐标,ui,vi认为对应的实测坐标,由最小和最小,可以解出A0,A1,A2,B0,B1,B2,实现图幅的变形校正。,当系统使用的数据来自不同地图投影的图幅时,需要将一种投影的数字化数据转换为所需要投影的坐标数据,三、地图投影变换,通过建立两个投影的解析关系式,直接
32、把一种投影坐标(x,y)变换成另一种投影的坐标(X,Y),当系统使用的数据来自不同地图投影的图幅时,需要将一种投影的数字化数据转换为所需要投影的坐标数据,由一种投影的坐标(x,y)反解出地理坐标(,),然后再将地理坐标代入另一种投影公式中,求出该投影下的直角坐标(X,Y),三、地图投影变换,当系统使用的数据来自不同地图投影的图幅时,需要将一种投影的数字化数据转换为所需要投影的坐标数据,根据两种投影在变换区内若干同名的坐标点,采用插值法、有限差分法、待定系数法等,实现不同投影之间的转换,三、地图投影变换,三、地图投影变换,1、解析变换法1)反解变换法(又称间接变换法),第五章 空间数据的处理,5
33、-1 坐标变换,假定原图点的坐标为x,y(称为旧坐标),新图点的坐标为X,Y(称为新坐标),则由旧坐标变换为新坐标的基本方程式为:,2)正解变换法(又称直接变换法),2、数值变换法,利用若干同名数字化点(对同一点在两种投影中均已知其坐标的点),采用插值法、有限差分法或多项式逼近的方法,即用数值变换法来建立两投影间的变换关系式。,第五章 空间数据的处理,5-1 坐标变换,例如,采用二元三次多项式进行变换:,通过选择10个以上的两种投影之间的共同点,并组成最小二乘法的条件式,进行解算系数。,3、数值解析变换法,当已知新投影的公式,但不知原投影的公式时,可先通过数值变换求出原投影点的地理坐标,然后代
34、入新投影公式中,求出新投影点的坐标。即:,第五章 空间数据的处理,5-1 坐标变换,4线性目标操作的基本算法、数值解析变换法(P125),(1)求线相交(2)曲线光滑(3)曲线化简,第五章 空间数据的处理,5-1 坐标变换,5-2 图形编辑,图形编辑是一交互处理过程,GIS具备的图形编辑功能的要求是:1)具有友好的人机界面,即操作灵活、易于理解、响应迅速等;2)具有对几何数据和属性编码的修改功能,如点、线、面的增加、删除、修改等;3)具有分层显示和窗口操作功能,便于用户的使用。,第五章 空间数据的处理,图形编辑又叫数据编辑、数字化编辑,是指对地图资料数字化后的数据进行编辑加工,其主要的目的是在
35、改正数据差错的同时,相应地改正数字化资料的图形。,一、编辑操作,1)结点吻合(Snap)或称结点匹配、结点咬合,结点附和。方法:A、结点移动,用鼠标将其它两点移到另一点;B、鼠标拉框,用鼠标拉一个矩形,落入该矩形内的结点坐标通过求它们的中间坐标匹配成一致;C、求交点,求两条线的交点或其延长线的交点,作为吻合的结点;D、自动匹配,给定一个吻合容差,或称为咬合距,在图形数字化时或之后,将容差范围内的结点自动吻合成一点。,第五章 空间数据的处理,5-2 图形编辑,一般,若结点容差设置合理,大多数结点能够吻合在一起,但有些情况还需要使用前三种方法进行人工编辑。,1、结点的编辑,2)结点与线的吻合,编辑
36、的方法:A、结点移动,将结点移动到线目标上。B、使用线段求交;C、自动编辑,在给定容差内,自动求交并吻合在一起。,第五章 空间数据的处理,5-2 图形编辑,A,B,D,C,E,在数字化过程中,常遇到一个结点与一个线状目标的中间相交。由于测量或数字化误差,它不可能完全交于线目标上,需要进行编辑,称为结点与线的吻合。,3)需要考虑两种情况A、要求坐标一致,而不建立拓扑关系;如 高架桥(不需打断,直接移动)B、不仅坐标一致,且要建立之间的空间关联关系;如 道路交叉口(需要打断),无结点,有结点,4)清除假结点(伪结点),第五章 空间数据的处理,5-2 图形编辑,有些系统要将这种假结点清除掉(如ARC
37、/INFO),即将目标A 和B合并成一条,使它们之间不存在结点;但有些系统并不要求清除假结点,如Geostar,因为它们并不影响空间查询、分析和制图。,由仅有两个线目标相关联的结点成为假结点。,A,B,2、图形编辑,包括用鼠标增加或删除一个点、线、面实体,移动、旋转一个点、线、面实体。1)删除和增加一个顶点 删除顶点,在数据库中不用整体删除与目标有关的数据,只是在原来存储的位置重写一次坐标,拓扑关系不变。增加顶点,则操作和处理都要复杂。不能在原来的存储位置上重写,需要给一个新的目标标识号,在新位置上重写,而将原来的目标删除,此时需要做一系列处理,调整空间拓扑关系。2)移动一个顶点 移动顶点只涉
38、及某个点的坐标,不涉及拓扑关系的维护,较简单。3)删除一段弧段 复杂,先要把原来的弧段打断,存储上原来的弧段实际被删除,拓扑关系需要调整和变化.,第五章 空间数据的处理,5-2 图形编辑,j,k,j,k,a,b,L3,L1,L2,3、数据检查与清理,数据检查指拓扑关系的检查,结点是否匹配,是否存在悬挂弧段,多边形是否封闭,是否有假结点。要求系统能将有错误或不正确的拓扑关系的点、线和面用不同的颜色和符号表示出来,以便于人工检查和修改。,第五章 空间数据的处理,5-2 图形编辑,数据清理则是用自动的方法清除空间数据的错误.例如给定一个结点吻合的容差使该容差范围内的结点自动吻合在一起,并建立拓扑关系
39、。给定悬挂弧段容差,将小于该容差的短弧自动删除。在Arc/info中用Data Clean 命令,在Geostar中选择整体结点匹配菜单。,4、撤消与恢复编辑 Undo,Redo功能是必要的。但功能的实现是困难的。当撤消编辑,即恢复目标,要恢复目标的标识和坐标、拓扑关系。这一处理过程相当复杂.因此,有些GIS不在图形编辑时实时建立和维护拓扑关系,如Arc/Info等,而在图形编辑之后,发Clean 或Build命令重新建立拓扑关系。这样,在每次进行任何一次编辑,都要重新Clean 或Build,对用户不便。,N1,N2,A2,N1,N2,A2,二、关键算法,可设一捕捉半径D(通常为35个象素,
40、这主要由屏幕的分辩率和屏幕的尺寸决定)。,第五章 空间数据的处理,5-2 图形编辑,1、点的捕捉,设光标点为S(x,y),某一点状要素的坐标为A(X,Y),若S和A的距离d小于D则认为捕捉成功,即认为找到的点是A,否则失败,继续搜索其它点。,乘方运算影响了搜索的速度,因此,把距离d的计算改为:,捕捉范围由圆改为矩形,这可大大加快搜索速度。,2、线的捕捉,设光标点坐标为S(x,y),D为捕捉半径,线的坐标为(x1,y1),(x2,y2),(xn,yn)。通过计算S到该线的每个直线段的距离d。.若min(d1,d2,dn-1)D,则认为光标S捕捉到了该条线,否则为未捕捉到。加快线捕捉的速度的方法:
41、1)在实际的捕捉中,可每计算一个距离di就进行一次比较,若diD,则捕捉成功,不需再进行下面直线段到点S的距离计算了。2)把不可能被光标捕捉到的线,用简单算法去除。3)对于线段也采用类似的方法处理。4)简化距离公式:点S(x,y)到直线段(x1,y1),(x2,y2)的距离d的计算公式为:,第五章 空间数据的处理,5-2 图形编辑,简化为:,3、面的捕捉,实际上就是判断光标点S(x,y)是否在多边形内,若在多边形内则说明捕捉到。判断点是否在多边形内的算法主要有垂线法或转角法。垂线法的基本思想是从光标点引垂线(实际上可以是任意方向的射线),计算与多边形的交点个数。若交点个数为奇数则说明该点在多边
42、形内;若交点个数为偶数,则该点在多边形外。加快速度的方法:1)找出该多边形的外接矩形,若光标点落在该矩形中,才有可能捕捉到该面,否则放弃对该多边形的进一步计算和判断。2)对不可能有交点的线段应通过简单的坐标比较迅速去除。3)运用计算交点的技巧。,第五章 空间数据的处理,5-2 图形编辑,4、图形编辑的数据组织空间索引,为加速检索,需要分层建索引,主要方法有格网索引和四叉树索引。格网索引,第五章 空间数据的处理,5-2 图形编辑,a、每个要素在一个或多个网格中b、每个网格可含多个要素c、要素不真正被网格分割,,对象索引,空间索引,5-3 拓扑关系的自动建立,一、点线拓扑关系的自动建立,第五章 空
43、间数据的处理,a1,a2,N1,N2,N3,N4,a3,a1,a2,N1,N2,N3,a1,a2,N1,N2,N3,N4,a3,a4,(b),(a),(c),结点-弧段表,弧段-结点表,1、在图形采集和编辑中实时建立,2、在图形采集和编辑之后自动建立,其基本原理与前类似。,二、多边形拓扑关系自动建立,1、链的组织1)找出在链的中间相交的情况,自动切成新链;2)把链按一定顺序存储,并把链按顺序编号。2、结点匹配1)把一定限差内的链的端点作为一个结点,其坐标值取多个端点的平均值。2)对结点顺序编号。3、检查多边形是否闭合通过判断一条链的端点是否有与之匹配的端点来进行.,5-3 拓扑关系的自动建立,
44、第五章 空间数据的处理,多边形不闭合的原因:1)由于结点匹配限差的问题,造成应匹配的端点未匹配;2)由于数字化误差较大,或数字化错误,这些可以通过图形编辑或重新确定匹配限差来确定。3)还可能这条链本身就是悬挂链,不需参加多边形拓扑,这种情况下可以作一标记,使之不参加下一阶段拓扑建立多边形的工作。,4、建立多边形,1)概念a、顺时针方向构多边形:指多边形是在链的右侧。b、最靠右边的链:指从链的一个端点出发,在这条链的方向上最右边的第一条链,实质上它也是左边最近链。a的最右边的链为d c、多边形面积的计算,5-3 拓扑关系的自动建立,第五章 空间数据的处理,当多边形由顺时针方向构成时,面积为正;反
45、之,面积为负。,2)建立多边形的基本过程,1 顺序取一个结点为起始结点,取完为止;取过该结点的任一条链作为起始链。2 取这条链的另一结点,找这个结点上,靠这条链最右边的链,作为下一条链。3 是否回到起点:是,已形成一多边形,记录之,并转4;否,转2。4取起始点上开始的,刚才所形成多边形的最后一条边作为新的起始链,转2;若这条链已用过两次,即已成为两个多边形的边,则转1。,5-3 拓扑关系的自动建立,第五章 空间数据的处理,例:1从P1开始,起始链定为P1P2,从P2点算起,P1P2最右边的链为P2P5;从P5算起,P2P5最右边 的链为P5P1,.形成的多边形为P1P2P5P1。2从P1开始,
46、以P1P5为起始链,形成的多边形为P1P5P4P1。3从P1开始,以P1P4为起始链,形成的多边形为P1P4P3P2P1。4 这时P1为结点的所有链均被使用了两次,因而转向下一个结点P2,继续进行多边形追踪,直至所有的结点取完。共可追踪出五个多边形,即A1、A2、A3、A4、A5。,3)欧拉dmteldl.ppt公式,5-3 拓扑关系的自动建立,第五章 空间数据的处理,5、岛的判断,找出多边形互相包含的情况.1、计算所有多边形的面积。2、分别对面积为正的多边形和面积为负的多边形排序。3、从面积为正的多边形中,顺序取每个多边形,取完为止。若负面积多边形个数为0,则结束。4、找出该多边形所包含的所
47、有面积为负的多边形,并把这些面积为负的多边形加入到包含它们的多边形中,转3。正面积多边形包含的负面积多边形是关键.1、找出所有比该正面积多边形面积小的负面积多边形。2、用外接矩形法去掉不可能包含的多边形。即负面积多边形的外接矩形不和该正面积多边形的外接矩形相交或被包含时,则不可能为该正面积多边形包含。3、取负面积多边形上的一点,看是否在正面积多边形内,若在内,则被包含;若在外,则不被包含。6、确定多边形的属性多边形以内点标识。内点与多边形匹配后,内点的属性常赋于多边形.,5-3 拓扑关系的自动建立,第五章 空间数据的处理,单多边形被追踪两次,p1,p2,p3,p1,p2,p3,-p1,-p2,
48、-p3,一、图形的裁剪-开窗处理,1、方式:正窗:提取窗口内的数据。开负窗:提取窗口外的数据子集。矩形窗和多边形窗。2、算法:包括点、线、面的窗口裁剪-计算机图形学。而不规则多边形开窗-相当于多边形叠置处理。,5-4 图形的裁剪、合并和图幅接边,第五章 空间数据的处理,二、图形合并-数据文件合并 一幅图内的多层数据合并在一起;或将相邻的多幅图的同一层数据合并.涉及到空间拓扑关系的重建。对于多边形,由于同一个目标在两幅图内已形成独立的多边形,合并时,需去除公共边界,属性合并,具体算法,删去共同线段。实际处理过程是先删除两个多边形,解除空间关系后,删除公共边,再重建拓扑。,p,L1,p,A,A,p
49、,L1,p,A,A,p,L1,p,A,A,去除公共边界,属性合并,直线的窗口裁剪:矢量裁剪法,矢量裁剪算法思想是:先从(A,B)为始点进行判断或进行求交运算,所得交点(x,y)保存在(xs,ys)中,然后再把矢量倒过来,即以(C,D)为始点,再用前面的判断及求交运算程序求得交点坐标(x,y),最后只输出从(xs,ys)到(x,y)之间的线段。,空间数据的接边处理,直线的窗口裁剪:中点分割,中点分割裁剪法又称对分法,其算法思想是:当一条线段既不能直接接受也不能直接舍弃,欲求其与区域的交点时,预先假设此交点落在线段的中点,如果这估计是错误的,则将直线分为两段,并对该两段再分别加以测试。用这种二分法
50、搜索方式一直进行下去,直到原来线段的一段被直接接受,而另一段被直接舍弃。,空间数据的接边处理,直线的窗口裁剪:中点分割,设裁剪区域是正矩形,要裁剪的线段为P1P2,如图6-5所示,为求其可见部分AB,算法可分两个过程平行进行,即:(1)从P1出发,找出离P1最近的可见点A;(2)从P2出发,找出离P2最近的可见点B。此两点的连线AB,即为原线段P1P2的可见部分。,空间数据的接边处理,多边形的窗口裁剪:逐边裁剪法,逐边裁剪法的具体做法是:每次用窗口的一条边界对要裁剪的多边形裁剪,把落在窗口外部区域的图形去掉,只保留窗口内部区域的图形,并把它作为下一次待裁剪的多边形。若连续用矩形窗口的4条边界对