ID控制器及PID参数整定.ppt

上传人:小飞机 文档编号:5434597 上传时间:2023-07-06 格式:PPT 页数:35 大小:236.50KB
返回 下载 相关 举报
ID控制器及PID参数整定.ppt_第1页
第1页 / 共35页
ID控制器及PID参数整定.ppt_第2页
第2页 / 共35页
ID控制器及PID参数整定.ppt_第3页
第3页 / 共35页
ID控制器及PID参数整定.ppt_第4页
第4页 / 共35页
ID控制器及PID参数整定.ppt_第5页
第5页 / 共35页
点击查看更多>>
资源描述

《ID控制器及PID参数整定.ppt》由会员分享,可在线阅读,更多相关《ID控制器及PID参数整定.ppt(35页珍藏版)》请在三一办公上搜索。

1、PID控制器及PID参数整定,授课内容:,自动控制原理的一般概念 控制系统的性能指标 P、I、D在控制系统中的作用 PID参数整定方法,1 自动控制规律的一般概念,所谓自动控制,就是指在没有人直接参与的情况下,利用控制器使被控对象(如机器、设备和生产过程)的某些物理量(或工作状态)能自动地按照预定的规律变化(或运行)。完成这一过程的所有元件与装置组成的整体就称为自动控制系统。现代数字计算机的迅速发展,为自动控制技术的应用开辟了广阔的前景。使它不仅大量应用于空间技术、科技、工业、交通管理、环境卫生等领域,而且它的概念和分析问题的方法也向其他领域渗透。例如政治、经济、教学等领域中的各种体系;人体的

2、各种功能;自然界中的各种生物学系统,都可视为是一种控制系统。自动控制系统的广泛应用不仅能使生产设备或过程实现自动化,极大地提高了劳动生产率和产品的质量,改善了劳动条件。,目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器传感器变送器执行机构输入输出接口。控制器的输出经过输出接口执行机构加到被控系统上控制系统的被控量经过传感器变送器通过输入接口送到控制器。不同的控制系统其传感器变送器执行机构是不一样的

3、。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。,自动控制是一门理论性很强的科学技术,一般泛称为“自动控制技术”。把实现自动控制所需的各个部件按一定的规律组合起来,去控制被控对象,这个组合体叫做“控制系统”。分析与综合控制系统的理论称之为“控制理论”。自动控制系统的种类较多,被控制的物理量有各种各样,如温度、压力、流量、电压、转速、位移和力等。组成这些控制系统的元、部件虽然有较大的差异,但是系统的基本结构却相类同,且一般都是通过机械、电气、液压等方法代替人工控制。,1.1、开环控制系统 开环控制系统(open-loop control system)是指被控对象的输出(

4、被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。,1.2、闭环控制系统 闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正

5、最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。,一个典型的反馈控制系统基本组成可以用图1.9 所示方块图表示。将组成系统的元件按在系统中的职能来划分,主要有以下几种。,(1)给定元件:给出与期望输出对应的输入量。(2)比较元件:求输入量与反馈量的偏差,常采用集成运放来实现。(3)放大元件:由于偏差信号一般都较小,不足以驱动负载,故需要放大元件,包括电压放大及功率放大。(4)执行元件:直接推动被控对象,使输出量发生变化。常用的有电动机、阀、液压马达等。

6、(5)测量元件:检测被控的物理量并转换为所需要的信号。在控制系统中常用的有用于速度检测的测速发电机、光电编码盘等,用于位置与角度检测的旋转变压器、自整机等,用于电流检测的互感器及用于温度检测的热电偶等。这些检测装置一般都将被检测的物理量转换为相应的连续或离散的电压信号。(6)校正元件:也叫补偿元件,是结构与参数便于调整的元件,以串联或反馈的方式联接在系统中,完成所需的运算功能,以改善系统的性能。,线性系统和非线性系统同时满足叠加性与均匀性(又称为齐次性)的系统称为线性系统。所谓叠加性是指当几个输入信号共同作用于系统时,总的输出等于每个输入单独作用时产生的输出之和;均匀性是指当输入信号增大若干倍

7、时,输出也相应增大同样的倍数。对于线性连续控制系统,可以用线性常系数的微分方程来表示。,不满足叠加性与均匀性的系统即为非线性控制系统。显然,系统中只要有一个元件的特性是非线性的,该系统即为非线性的控制系统。其特性要用非线性的微分或差分方程来描述。这类方程的特点是系数与变量有关,或者方程中含有变量及其导数的高次幂或乘积项。严格来说,实际中不存在线性系统,因为实际的物理系统总是具有不同程度的非线性,例如放大器的饱和特性、齿轮的间隙、电机的死区及摩擦特性等。非线性控制系统的研究目前还没有统一的方法。但对于非线性程度不太严重的系统,可在一定范围内将其近似为线性系统。,1.3控制系统的时域响应及性能指标

8、,任何一个稳定的线性控制系统,在输入信号作用下的时间响应都由动态响应(或瞬态响应、暂态响应)和稳态响应两部分组成。动态响应描述了系统的动态性能,而稳态响应反映了系统的稳态精度。两者都是线性控制系统的重要性能。因此,在对系统设计时必须同时给予满足。1.3.1.动态响应 动态响应又称瞬态响应或过渡过程,指系统在输入信号作用下,系统从初始状态到最终状态的响应过程。根据系统结构和参数选择情况,动态响应表现为衰减、发散或等幅振荡几种形式。显然,一个实际运行的控制系统,其动态响应必须是衰减的,也就是说,系统必须是稳定的。动态响应除提供系统稳定性的信息外,还可以提供响应速度及阻尼情况等运动信息,这些运动信息

9、用动态性能来描述。,1.3.2.稳态响应 如果一个线性系统是稳定的,那么从任何初始条件开始,经过一段时间就可以认为它的过渡过程已经结束,进入了与初始条件无关而仅由外作用决定的状态,即稳态响应。所以稳态响应是指当t 趋于无穷大时系统的输出状态。稳态响应表征系统输出量最终复现输入量的程度,提供系统有关稳态误差的信息,用稳态性能来描述。由此可见,线性控制系统在输入信号作用下的性能指标,通常由动态性能和稳态性能两部分组成。1.3.3 稳态性能指标 稳态性能指标是表征控制系统准确性的性能指标,是一项重要的技术指标,通常用稳态下输出量的期望值与实际值之间的差来衡量,称为稳态误差。如果这个差是常数,则称为静

10、态误差,简称静误差或静差。稳态误差是系统控制精度或抗扰动能力的一种度量。,1.3.4 动态性能指标 一个控制系统除了稳态控制精度要满足一定的要求以外,对控制信号的响应过程也要满足一定的要求,这些要求表现为动态性能指标。不稳定系统没有实用价值,因此不需要研究其动态性能指标。一般认为,阶跃输入对系统来说是最严峻的工作状态。如果系统在阶跃函数作用下的动态性能满足要求,那么系统在其他形式的函数作用下,其动态性能也是令人满意的。因此在大多数情况下,为了分析研究方便,最常采用的典型输入信号是单位阶跃函数,并在零初始条件下进行研究。也就是说,在输入信号加上之前,系统的输出量及其对时间的各阶导数均等于零。描述

11、稳定的系统在单位阶跃函数作用下,动态过程随时间t 的变化状况的指标称为动态性能指标。线性控制系统在零初始条件和单位阶跃信号输入下的响应过程曲线称为系统的单位阶跃响应曲线。典型形状如图3.1 所示。各项动态性能指标也示于图中。,(1)延迟时间d t:指响应曲线第一次达到其稳态值一半所需的时间,记作d t;(2)上升时间r t:指响应曲线首次从稳态值的10%过渡到90%所需的时间;对于有振荡的系统,亦可定义为响应曲线从零首次达到稳态值所需的时间,记作r t。上升时间是系统响应速度的一种度量。上升时间越短,响应速度越快;(3)峰值时间p t:指响应曲线第一次达到峰点的时间,记作p t;(4)调节时间

12、s t:指响应曲线最后进入偏离稳态值的误差为5%(也有取2%)的范围并且不再越出这个范围的时间,记作s t;(5)超调量%:对于图3.1 所示的振荡性的响应过程,响应曲线第一次越过稳态值达到峰值时,越过部分的幅度与稳态值之比称为超调量,记作%,即式中c()表示响应曲线的稳态值,cmax=c(tp)表示峰值。,上述五个动态性能指标,基本上可以体现系统动态过程的特征。在实际应用中,常用的动态性能指标多为上升时间、调节时间和超调量。通常用上升时间或峰值时间来评价系统的响应速度;用超调量评价系统的阻尼程度;而调节时间是同时反映响应速度和阻尼程度的综合性指标。,2、PID=Proportion Inte

13、gration Differentiation,按偏差的比例、积分和微分进行控制的调节器简称为pid调节器,是连续系统中技术成熟、应用最为广泛的一种调节器。Pid调节器结构简单,参数易于调整,在长期应用中已积累了丰富的经验。特别在工业过程中,由于控制对象的精确数学模型难以建立,系统的参数又经常发生变化,运用现代控制理论分析综合要耗费很大代价进行模型辨识,但往往不能得到预期的效果,所以人们常采用PID调节器,并根据经验进行在线整定。由于软件系统的灵活性,PID算法可以得到修正而更加完善。2.1 模拟PID调节器 PID调节器是一种线性调节器,这种调节器是将设定值w与实际输出值y进行比较构成控制偏

14、差 e=w y并将其比例、积分、微分通过线性组合构成控制量(如图4-11-1所示),所以简称为PID调节器。,在实际应用中,根据对象的特性和控制要求,也可灵活的改变其结构,取其中一部分环构成控制规律。例如,P调节器、PI调节器、PID调节器等。,1)比例调节器 比例调节器是最简单的一种调节器,其控制规律为 u=Ke+u 0(1-1)式中,K为比例系数,u 0 为控制量的基准,也就是e=0时的控制作用(阀门起始开度基准电平信号等)。图4-2显示了比例调节器对于偏差阶跃变化的时间响应。,比例调节器对于偏差e是即时反应的,偏差一旦产生,调节器立即产生控制作用使被控量朝着减小偏差的方向变化,控制作用的

15、强弱取决与比例系数K。比例调节器虽然简单快速,但对于具有自平衡性(及系统阶跃相应终值为有限值)的控制对象存在静差。加大比例系数K可以减小静差,但当K过大时,会使动态质量变坏,引起被控量振荡甚至导致闭环不稳定。2)比例积分调节器 为了消除在比例调节中残存的静差,可在比例调节的基础上加积分调节,形成比例积分调节器,其控制规律为 u=K(e+1/Tiedi)+u0 1-2式中,Ti为积分时间。,从图4-3可看出PI调节器对于偏差的阶跃响应除按比例变化的成分外,还带有累积的成分。只要偏差e不为零,它将通过累积作用影响控制量u,并减小偏差,直至偏差为零,控制作用不再变化,系统才能达到稳态。因此,积分环节

16、的加入将有助于消除系统的静差。,显然,如果积分时间Ti大,则积分作用弱;反之,则积分作用强。增大Ti将减慢消除静差的过程,但可减小超调,提高稳定性。Ti必须根据对象特性选定,对于管道压力、流量等滞后不大的对象,Ti可选的小一些;对温度等滞后较大的对象,Ti可选的大一些。,3)比例积分微分调节器 积分调节作用的加入,虽然可以消除静差,但花出的代价是降低了响应速度。为了加快控制过程,有必要在偏差出现或变化的瞬间,不但对偏差量做出即时反应(即比例调节作用),而且对偏差量的变化作出反应,或者说按偏差变化的趋向进行控制,使偏差消灭与萌芽状态之中。微分作用对偏差的任何变化都产生一控制作用,以调整系统输出,

17、阻止偏差的变化越快,ud越大,反馈校正量则越大。故微分作用的加入将有助于减小超调,克服振荡,使系统趋于稳定。它加快了系统的动作速度,减小调整时间,从而改善了系统的动态性能。为了达到之一目的,可以在上述PI调节器的基础上再加入微分调节以得到PID调节器的如下控制规律,在工业过程控制中,模拟PID调节器有电动、气动、液压等多种类型。这类模拟调节仪表是用硬件来实现PID调节规律的。自从计算机进入控制领域以来,用计算机软件(包括PLC的指令)来实现PID调节算法不但成为可能,而且具有更大的灵活性。,2.2数字PID控制算法,由于计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量,因此式(1

18、-3)中的积分和微分项不能直接准确计算,只能用数值计算的方法逼近。在采样时刻t=iT(T为采样周期),(1-3)所表示的PID调节规律可通过数值公式 ui=K(ei+T/Tiej+Td/T(ei-ei-1))+u0(1-4)近似计算。如果采样周期T取得足够小,这种逼近可相当准确,被控过程与连续控制过程身份接近,我们把这种情况称为“准连续控制”。,2.3 PID调节器参数选择,在选择调节器参数前,应首先确定调节器的结构,以保证被控系统的稳定,并尽可能消除静差。因此,对于有自平衡性的对象来说,应选择包含积分环节的调节器(I,PI或PID调节器);而对于无自平衡性的对象,则应选择不包含积分环节的调节

19、器(P,PD调节器)。对于某些有自平衡性的对象,也可以选择比例或比例微分调节器,但这时会产生静差,如果选择合适的比例系数,可以使系统静差保持在允许的范围内。对于具有纯滞后性质的对象,则往往应加入微分环节。,PID参数可以用理论方法获得,也可以通过实验获得。用理论方法获得的前提是要有被控对象的准确模型,这在工业过程中一般较难做到,即使花了很大代价进行系统的辨识,所得的模型也只是近似的,加上系统的结构和参数都在随时间变化,在近似模型基础上设计的最优控制器在实际过程中就很难说是最优的。因此,在工程上PID调节器的参数常常通过实验试凑来确定。,P、I、D在控制系统中的作用:,增大比例系数K,一般将加快

20、系统的响应,有静差的情况下有利于减小静差。控制作用的强弱取决于比例系数K。但过大的比例系数会使系统有较大的超调,并产生震荡,使稳定型变坏。增大积分时间Ti,有利于减小超调,减小振荡,使系统更加稳定,但系统静差的消除将随之减慢。增大为分时间Td,亦有利于加快系统响应,使超调减小,克服震荡,稳定性增加,但系统对扰动的控制能力减弱,对扰动有较敏感的响应。,经验试凑法确定PID参数的步骤:,比例部分 为了减少试凑次数,可利用在选PID参数时已取得的经验,把P定在某一范围内,将调节器选为纯比例系数,使系统对信号输入的响应达到临界振荡状态(稳定边缘)。具体做法为:首先去掉PID的积分项和微分项,一般是令T

21、i=0、Td=0使PID为纯比例调节。将比例系数由小到大,并观察相应的系统响应,直至得到反应快、超调小的响应曲线。由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P如果系统没有静差或静差已经小到允许的范围内,并且已经满意,那么只需用比例调节器即可,比例系数可以由此确定。(P最好在0.1左右,最好别超过0.3),2)加入积分环节 如果在比例调节器的基础上系统的静差不能满足,则需加入积分环节。整定时先把上步中得到的P的值调小一点(如缩小到原值的0.8倍)再调i,首先置积分时间Ti为一较大值(注意积分时间和积分作用的关系),然后减小

22、积分时间,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。使在保持系统良好的动态性能的情况下,静差得到消除。在此过程中,可根据响应曲线的好坏反复改变比例系数和积分时间,以期得到满意的控制过程与整定参数。3)加入微分环节 若使用比例积分调节器消除了静差,但动态过程经反复调整仍不能满意,则可加入微分环节,构成比例积分微分调节器。在整定时,可先置微分时间Td为零。在第二步整定的基础上,增大Td,同时相应的改变比例系数和积分时间,逐步试凑,以获得满意效果。,PID常用口诀:参数整定找最佳,从小到大顺序查 先是比例后积分,最后再把微分加 曲线振荡很频繁,比例度盘要放大 曲线漂浮绕大湾,比例度盘往小扳 曲线偏离回复慢,积分时间往下降 曲线波动周期长,积分时间再加长 曲线振荡频率快,先把微分降下来 动差大来波动慢。微分时间应加长,PID调节器的参数对控制质量的影响部十分敏感,因而在整定中参数的选定并不是唯一的。事实上,在比例、积分、微分三部分产生的控制作用中,某部分的减小往往可由其它部分的增大来补偿。因此不同的整定参数完全有可能得到同样的效果。,谢 谢 大 家 的 支 持,下 课,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号