《《图像增强讲义》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《图像增强讲义》PPT课件.ppt(59页珍藏版)》请在三一办公上搜索。
1、图像增强,图像增强是采用一系列技术去改善图像的视觉效果,或将图像转换成一种更适合于人或机器进行分析和处理的形式。例如采用一系列技术有选择地突出某些感兴趣的信息,同时抑制一些不需要的信息,提高图像的使用价值。图像增强方法从增强的作用域出发,可分为空间域增强和频率域增强两种。空间域增强是直接对图像各像素进行处理;频率域增强是将图像经傅立叶变换后的频谱成分进行处理,然后逆傅立叶变换获得所需的图像。,图像增强所包含的主要内容如图:,图像增强的点运算,灰度变换 灰度变换可调整图像的灰度动态范围或图像对比度,是图像增强的重要手段之一。1线性变换 令图像f(i,j)的灰度范围为a,b,线性变换后图像g(i,
2、j)的范围为a,b,如图。g(i,j)与f(i,j)之间的关系式为:,在曝光不足或过度的情况下,图像灰度可能会局限在一个很小的范围内。这时在显示器上看到的将是一个模糊不清、似乎没有灰度层次的图像。采用线性变换对图像每一个像素灰度作线性拉伸,可有效地改善图像视觉效果。,反色变换,2分段线性变换 为了突出感兴趣目标所在的灰度区间,相对抑制那些不感兴趣的灰度区间,可采用分段线性变换。设原图像f(x,y)在0,Mf,感兴趣目标的灰度范围在a,b,欲使其灰度范围拉伸到c,d,则对应的分段线性变换表达式为,通过细心调整折线拐点的位置及控制分段直线的斜率,可对任一灰度区间进行拉伸或压缩。,对比度扩展,分段线
3、性变换,削波,阈值化,灰度窗口,3非线性灰度变换 当用某些非线性函数如对数函数、指数函数等,作为映射函数时,可实现图像灰度的非线性变换。对数变换 对数变换的一般表达式为,这里a,b,c是为了调整曲线的位置和形状而引入的参数。当希望对图像的低灰度区较大的拉伸而对高灰度区压缩时,可采用这种变换,它能使图像灰度分布与人的视觉特性相匹配。,f(i,j),g(i,j),指数变换 指数变换的一般表达式为 这里参数a,b,c用来调整曲线的位置和形状。这种变换能对图像的高灰度区给予较大的拉伸。,g(i,j),f(i,j),对数变换动态范围压缩,直方图修整法 灰度直方图反映了数字图像中每一灰度级与其出现频率间的
4、关系,它能描述该图像的概貌。通过修改直方图的方法增强图像是一种实用而有效的处理技术。直方图修整法包括直方图均衡化及直方图规定化两类。1.直方图均衡化 直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。,直方图均衡化示例,2.直方图规定化 在某些情况下,并不一定需要具有均匀直方图的图像,有时需要具有特定的直方图的图像,以便能够增强图像中某些灰度级。直方图规定化方法就是针对上述思想提出来的。直方图规定化是使原图像灰度直方图变成规定形状的直方图而对图像作修正的增强方法。可见,它是对直方图均衡化处理的一种有效的扩展。直方图均衡化处理是直方图规定化的一个特例。,下面是一个直
5、方图规定化应用实例。,图(C)、(c)是将图像(A)按图(b)的直方图进行规定化得到的结果及其直方图。通过对比可以看出图(C)的对比度同图(B)接近一致,对应的直方图形状差异也不大。这样有利于影像融合处理,保证融合影像光谱特性变化小。,模 板,图像的空间域平滑,任何一幅原始图像,在其获取和传输等过程中,会受到各种噪声的干扰,使图像恶化,质量下降,图像模糊,特征淹没,对图像分析不利。为了抑制噪声改善图像质量所进行的处理称图像平滑或去噪。它可以在空间域和频率域中进行。本节介绍空间域的几种平滑法。局部平滑法 局部平滑法是一种直接在空间域上进行平滑处理的技术。假设图像是由许多灰度恒定的小块组成,相邻像
6、素间存在很高的空间相关性,而噪声则是统计独立的。因此,可用邻域内各像素的灰度平均值代替该像素原来的灰度值,实现图像的平滑。,设有一幅NN的图像f(x,y),若平滑图像为g(x,y),则有 式中x,y=0,1,N-1;s为(x,y)邻域内像素坐标的集合;M表示集合s内像素的总数。可见邻域平均法就是将当前像素邻域内各像素的灰度平均值作为其输出值的去噪方法。,例如,对图像采用33的邻域平均法,对于像素(m,n),其邻域像素如下:,则有:,其作用相当于用这样的模板同图像卷积。设图像中的噪声是随机不相关的加性噪声,窗口内各点噪声是独立同分布的,经过上述平滑后,信号与噪声的方差比可望提高M倍。这种算法简单
7、,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别在边缘和细节处。而且邻域越大,在去噪能力增强的同时模糊程度越严重。如下图,(a)原图像(b)对(a)加椒盐噪声的图像(c)33邻域平滑(d)55邻域平滑,为克服简单局部平均法的弊病,目前已提出许多保边缘、细节的局部平滑算法。它们的出发点都集中在如何选择邻域的大小、形状和方向、参加平均的点数以及邻域各点的权重系数等,下面简要介绍几种算法。,超限像素平滑法 对邻域平均法稍加改进,可导出超限像素平滑法。它是将f(x,y)和邻域平均g(x,y)差的绝对值与选定的阈值进行比较,根据比较结果决定点(x,y)的最后灰度g(x,y)。其表达式为 这算法对抑
8、制椒盐噪声比较有效,对保护仅有微小灰度差的细节及纹理也有效。可见随着邻域增大,去噪能力增强,但模糊程度也大。同局部平滑法相比,超限像素平滑法去椒盐噪声效果更好。,(a)原图像(b)对(a)加椒盐噪声的图像(c)33邻域平滑(d)55邻域平滑(e)33超限像素平滑(T=64)(f)55超限像素平滑(T=48),中值滤波 中值滤波是对一个滑动窗口内的诸像素灰度值排序,用中值代替窗口中心像素的原来灰度值,因此它是一种非线性的图像平滑法。例:采用13窗口进行中值滤波原图像为:2 2 6 2 1 2 4 4 4 2 4处理后为:2 2 2 2 2 2 4 4 4 4 4 它对脉冲干扰及椒盐噪声的抑制效果
9、好,在抑制随机噪声的同时能有效保护边缘少受模糊。但它对点、线等细节较多的图像却不太合适。对中值滤波法来说,正确选择窗口尺寸的大小是很重要的环节。一般很难事先确定最佳的窗口尺寸,需通过从小窗口到大窗口的中值滤波试验,再从中选取最佳的。,原图像 中值滤波一维中值滤波的几个例子(N=5)离散阶跃信号、斜升信号没有受到影响。离散三角信号的顶部则变平了。对于离散的脉冲信号,当其连续出现的次数小于窗口尺寸的一半时,将被抑制掉,否则将不受影响。,一维中值滤波的概念很容易推广到二维。一般来说,二维中值滤波器比一维滤波器更能抑制噪声。二维中值滤波器的窗口形状可以有多种,如线状、方形、十字形、圆形、菱形等(见图)
10、。不同形状的窗口产生不同的滤波效果,使用中必须根据图像的内容和不同的要求加以选择。从以往的经验看,方形或圆形窗口适宜于外轮廓线较长的物体图像,而十字形窗口对有尖顶角状的图像效果好。,图(a)为原图像;图(b)为加椒盐噪声的图像;图(c)和图(d)分别为33、55模板进行中值滤波的结果。可见中值滤波法能有效削弱椒盐噪声,且比邻域、超限像素平均法更有效。,均值降噪,图像空间域锐化,在图像的识别中常需要突出边缘和轮廓信息。图像锐化就是增强图像的边缘或轮廓。图像平滑通过积分过程使得图像边缘模糊,图像锐化则通过微分而使图像边缘突出、清晰。梯度锐化法 图像锐化法最常用的是梯度法。对于图像f(x,y),在(
11、x,y)处的梯度定义为 梯度是一个矢量,其大小和方向为,对于离散图像处理而言,常用到梯度的大小,因此把梯度的大小习惯称为“梯度”。并且一阶偏导数采用一阶差分近似表示,即,fx=f(x+1,y)-f(x,y)fy=f(x,y+1)-f(x,y)为简化梯度的计算,经常使用 grad(x,y)=Max(|fx|,|fy|)或 grad(x,y)=|fx|+|f y|除梯度算子以外,还可采用Roberts、Prewitt和Sobel 算子计算梯度,来增强边缘。Roberts对应的模板如图4.3.2所示。差分计算式如下 fx=|f(x+1,y+1)-f(x,y)|fy=|f(x+1,y)-f(x,y+1
12、)|,为在锐化边缘的同时减少噪声的影响,Prewitt从加大边缘增强算子的模板大小出发,由2x2扩大到3x3来计算差分,如图(a)所示。(a)Prewitt 算子(b)Sobel算子 Sobel在Prewitt算子的基础上,对4-邻域采用带权的方法计算差分,对应的模板如图(b)。根据梯度计算式就可以计算Roberts、Prewitt和Sobel梯度。一旦梯度算出后,就可根据不同的需要生成不同的梯度增强图像。,第一种输出形式:梯度图像直接输出 g(x,y)=grad(x,y)此法的缺点是增强的图像仅显示灰度变化比较徒的边缘轮廓,而灰度变化比较平缓或均匀的区域则呈黑色。第二种输出形式:加阈值的梯度
13、输出 式中T是一个非负的阈值。适当选取T,可使明显的边缘轮廓得到突出,又不会破坏原来灰度变化比较平缓的背景 第三种输出形式:给边缘规定特定灰度级 它将明显边缘用一固定的灰度级LG来表现。,第四种输出形式:给背景规定特定灰度级 此方法将背景用一个固定的灰度级 LB来表现,便于研究边缘灰度的变化。第五种输出形式:二值图像输出 这种方法将明显边缘和背景分别用灰度级LG和LB表示,生成二值图像,便于研究边缘所在位置。,Laplacian增强算子 Laplacian 算子是线性二阶微分算子。即 2f(x,y)=,对离散的数字图像而言,二阶偏导数可用二阶差分近似,可推导出Laplacian算子表达式为 2
14、f(x,y)=f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x,y-1)-4f(x,y)Laplacian增强算子为:g(x,y)=f(x,y)-2f(x,y)=5f(x,y)-f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x,y-1),其特点是:1、在灰度均匀的区域或斜坡中间2f(x,y)为0,增强图像上像元灰度不变;2、在斜坡底或低灰度侧形成“下冲”;而在斜坡顶或高灰度侧形成“上冲”。0-1 0-1 1 1 H1=-1 5 1 H2=-1 9 1 0-1 0-1 1 1,高通滤波法 高通滤波法就是用高通滤波算子和图像卷积来增强边缘。常用的算子有:,图像的频率域增强
15、图像增强的目的主要包括:消除噪声,改善图像的视觉效果;突出边缘,有利于识别和处理。前面是关于图像空间域增强的知识,下面介绍频率域增强的方法。假定原图像为f(x,y),经傅立叶变换为F(u,v)。频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像g(x,y)。频率域增强的一般过程如下:DFT H(u,v)IDFTf(x,y)F(u,v)F(u,v)H(u,v)g(x,y)滤波,图像的平滑除了在空间域中进行外,也可以在频率域中进行。由于噪声主要集中在高频部分,为去除噪声改善图像质量,滤波器采用低通滤波器H(u,v)来抑制高频成分,通过低频成
16、分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的。常用的频率域低滤波器H(u,v)有四种:1理想低通滤波器 设傅立叶平面上理想低通滤波器离开原点的截止频率为D0,则理想低通滤波器的传递函数为 由于高频成分包含有大量的边缘信息,因此采用该滤波器在去噪声的同时将会导致边缘信息损失而使图像边模糊。,频率域平滑,2Butterworth低通滤波器 n阶Butterworth滤波器的传递函数为:它的特性是连续性衰减,而不象理想滤波器那样陡峭变化,即明显的不连续性。因此采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度大大减小,没有振铃效应产生。,3指数低通滤波器 指数低通滤波器是图像处理
17、中常用的另一种平滑滤波器。它的传递函数为:采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度较用Butterworth滤波产生的大些,无明显的振铃效应。,4.梯形低通滤波器 梯形低通滤波器是理想低通滤波器和完全平滑滤波器的折中。它的传递函数为:它的性能介于理想低通滤波器和指数滤波器之间,滤波的图像有一定的模糊和振铃效应。,a)出现虚假轮廓的图 b)理想低通滤波器平滑结果 c)巴特沃斯滤波器平滑结果,频率域锐化 图像的边缘、细节主要位于高频部分,而图像的模糊是由于高频成分比较弱产生的。频率域锐化就是为了消除模糊,突出边缘。因此采用高通滤波器让高频成分通过,使低频成分削弱,再经逆傅立叶变换得到边
18、缘锐化的图像。常用的高通滤波器有:1)理想高通滤波器 二维理想高通滤波器的传递函数为,2)巴特沃斯高通滤波器 n阶巴特沃斯高通滤波器的传递函数定义如下 H(u,v)=1/1+(D0/D(u,v)2n 3)指数滤波器 指数高通滤波器的传递函数为,4)梯形滤波器 梯形高通滤波器的定义为,四种滤波函数的选用类似于低通。理想高通有明显振铃现象,即图像的边缘有抖动现象;Butterworth高通滤波效果较好,但计算复杂,其优点是有少量低频通过,H(u,v)是渐变的,振铃现象,不明显;指数高通效果比Butterworth差些,振铃现象不明显;梯形高通会产生微振铃效果,但计算简单,较常用。一般来说,不管在图
19、像空间域还是频率域,采用高频滤波不但会使有用的信息增强,同时也使噪声增强。因此不能随意地使用。,a)原图 b)巴特沃斯滤波器增强,c)转移函数加1个常数得到的结果,彩色增强技术 人眼的视觉特性:分辨的灰度级介于十几到二十几级之间;彩色分辨能力可达到灰度分辨能力的百倍以上。彩色增强技术是利用人眼的视觉特性,将灰度图像变成彩色图像或改变彩色图像已有彩色的分布,改善图像的可分辨性。彩色增强方法可分为伪彩色增强和假彩色增强两类。伪彩色增强 伪彩色增强是把黑白图像的各个不同灰度级按照线性或非线性的映射函数变换成不同的彩色,得到一幅彩色图像的技术。使原图像细节更易辨认,目标更容易识别。伪彩色增强的方法主要
20、有密度分割法、灰度级一彩色变换和频率域伪彩色增强三种。,密度分割法 密度分割法是把黑白图像的灰度级从0(黑)到M0(白)分成N个区间Ii(i=1,2,N),给每个区间Ii指定一种彩色Ci,这样,便可以把一幅灰度图像变成一幅伪彩色图像。该方法比较简单、直观。缺点是变换出的彩色数目有限。,伪彩色增强例:0-31 32-63 64-95 96-127 128-159 160-191 192-223 224-255 黑 蓝 绿 青 红 品红 黄 白,2.空间域灰度级一彩色变换 根据色度学原理,将原图像f(x,y)的灰度范围分段,经过红、绿、蓝三种不同变换TR()、TG()和TB(),变成三基色分量IR(x,y)、IG(x,y)、IB(x,y),然后用它们分别去控制彩色显示器的红、绿、蓝电子枪,便可以在彩色显示器的屏幕上合成一幅彩色图像。,3.频率域伪彩色增强 频率域伪彩色增强的方法是:把黑白图像经傅立叶变换到频率域,在频率域内用三个不同传递特性的滤波器分离成三个独立分量;然后对它们进行逆傅立叶变换,便得到三幅代表不同频率分量的单色图像,接着对这三幅图像作进一步的处理(如直方图均衡化)最后将它们作为三基色分量分别加到彩色显示器的红、绿、蓝显示通道,得到一幅彩色图像。,