《《理论力学动静法》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《理论力学动静法》PPT课件.ppt(53页珍藏版)》请在三一办公上搜索。
1、,第九章 达兰贝尔原理,2,动力学普遍定理,是解决动力学问题的普遍方法,在一定条件下也是简捷而有效的方法。本章介绍解答动力学问题的另一种方法达兰贝尔原理或译为达朗伯原理。应用这一原理,就将动力学问题从形式上转化为静力学问题,从而根据关于平衡的理论来求解。这种解答动力学问题的方法,因而也称动静法。,动力学,3,9-1惯性力的概念,人用手推车,动力学,力 是由于小车具有惯性,力图保持原来的运动状态,对于施力物体(人手)产生的反抗力。称为小车的惯性力。,定义:质点惯性力 加速运动的质点,对迫使其产生加速运动的物体的惯性反抗的总和。,4,动力学,惯性力作用在使质点产生加速度的其他施力物体上。,大小:F
2、J=ma,方向:与 相反,按不同坐标系,惯性力可分解为:,5,动力学,这就是质点的达兰贝尔原理。,9-2达兰贝尔原理,非自由质点M,质量m,受主动力,约束反力 作用,、的 合力为,由牛顿第二定律:,假象地将 作用在M上,则,即:,一、质点的达兰贝尔原理,6,动力学,该方程对动力学问题来说只是形式上的平衡,并没有改变动力学问题的实质。采用动静法解决动力学问题的最大优点,就是可以利用静力学提供的解题方法,给动力学问题一种统一的解题格式。也就是:对于动力学问题,假想地加上惯性力,就可以用平衡方程求解。,7,动力学,例1 列车在水平直线轨道上行驶,车厢内悬挂一单摆,当车厢向右作匀加速运动时,单摆左偏角
3、度,相对于车厢静止。求车厢的加速度。,8,动力学,研究对象:单摆的摆锤 虚加惯性力,角随着加速度 的变化而变化,当 不变时,角也不变。只要测出 角,就能知道列车的加速度。摆式加速计的原理。,解:,得,方向与 相反,9,动力学,对整个质点系,如果在每一个质点上都假象地加上惯性力,则主动力系、约束反力系、惯性力系在形式上构成平衡力系。这就是质点系的达兰贝尔原理。可用方程表示为:,设有一质点系由n个质点组成,对任一质点,虚加惯性力,则有,二、质点系的达兰贝尔原理,对于每一个研究对象,平面问题有三个平衡方程,空间问题有六个平衡方程。,10,动力学,9-3 刚体惯性力系的简化,一般质点系,在应用动静法是
4、,可在每一质点上虚加相应的惯性力,但对于刚体这样由无穷多质点组成的质点系,则不可能逐个质点虚加惯性力。怎么办?可以采用静力学中的力系简化的理论,求出各质点惯性力所组成的惯性力系的主矢和主矩,来代替惯性力系。这样,在刚体上虚加了惯性力系的主矢和主矩,就相当于在刚体上的各个质点上虚加了惯性力。,11,动力学,一、刚体作平动,惯性力系向质心C简化:,故刚体平动时惯性力系合成为一过质心的合惯性力。,12,动力学,空间惯性力系平面惯性力系(质量对称面)O为转轴z与质量对称平面的交点,向O点简化:,主矢:主矩:,二、定轴转动刚体,设刚体具有垂直于转轴的质量对称平面。,O,直线 i:平动,过Mi点,,13,
5、动力学,作用在C点,若向质心C简化,同理可得,实际应用时可将惯性主矢分解:,14,动力学,讨论:,若=0,转轴不通过质点C,向转轴简化,则,若转轴过质点C,且0,则,若=0且转轴过质心C,则,15,动力学,假设刚体具有质量对称平面,并且平行于该平面作平面运动。此时,刚体的惯性力系可先简化为对称平面内的平面力系。,刚体平面运动可分解为随基点(质点C)的平动:绕通过质心轴的转动:,三、刚体作平面运动,作用于质心C,无论刚体作什么运动,惯性力系主矢都等于刚体质量与质心加速度的乘积,方向与质心加速度方向相反。,16,动力学,*例1 均质杆长l,质量m,与水平面铰接,杆由与平面成0角位置静止倒下。求开始
6、倒下时杆AB的角加速度及A点支座反力。,(1)研究对象:杆AB(2)受力图(3计算惯性力系的主矢、主矩将惯性力系向A点简化:,解:,17,动力学,(4)选轴及矩心建立平衡方程求解,18,动力学,用动量矩定理+质心运动定理再求解此题:,解:选AB为研究对象,由质心运动定理:,19,动力学,*例2 牵引车的主动轮质量为m,半径为R,沿水平直线轨道滚动,设车轮所受的主动力可简化为作用于质心的两个力 及驱动力偶矩M,车轮对于通过质心C并垂直于轮盘的轴的回转半径为,轮与轨道间摩擦系数为f,试求在车轮滚动而不滑动的条件下,驱动力偶矩M 之最大值。,取轮为研究对象 虚加惯性力系:,解:,则:,20,动力学,
7、由(1)得,由(2)得 N=P+S,要保证车轮不滑动,必须 Ff N=f(mg+S)(5),可见,f 越大越不易滑动。Mmax的值为上式右端的值。,把(5)代入(4)得:,21,动力学,根据动静法,可以用静力学平衡方程的形式来建立动力学方程。应用动静法既可求运动,例如加速度、角加速度;也可以求力。应用动静法可以利用静力学建立平衡方程的一切形式上的便利。例如,矩心可以任意选取,二矩式,三矩式等等。因此当问题中有多个约束反力时,应用动静法求解它们时就方便得多。,动静法的应用,22,动力学,选取研究对象。原则与静力学相同。受力分析。画出全部主动力和外约束反力。运动分析。主要是刚体质心加速度,刚体角加
8、速度,标出 方向。,应用动静法求动力学问题的步骤及要点:,虚加惯性力。在受力图上画上惯性力和惯性力偶,一定要 在 正确进行运动分析的基础上。熟记刚体惯 性力系的简化结果。,23,动力学,列动静方程。选取适当的矩心和投影轴。建立补充方程。运动学补充方程(运动量之间的关系)。求解未知量。,注意 的方向及转向已在受力图中标出,建立方程时,只需按 计算即可。,24,动力学,例1 质量为m1和m2的两重物,分别挂在两条绳子上,绳又分别绕在半径为r1和r2并装在同一轴的两鼓轮上,已知两鼓轮对于转轴O的转动惯量为J,系统在重力作用下发生运动,求鼓轮的角加速度及O处反力。,取系统为研究对象,解:,方法1 用动
9、静法求解,25,动力学,虚加惯性力和惯性力偶:,则:,列补充方程:,重物1:重物2:轮:,26,动力学,x,y,27,动力学,方法2 用动量矩定理求解,根据动量矩定理:,取系统为研究对象,28,动力学,取系统为研究对象,任一瞬时系统的,两边除以dt,并求导数,得,方法3 用动能定理求解,方法2、3须用质心运动定理求O处反力,29,动力学,例2 在图示机构中,均质圆柱体A、O重分别为P和Q,半径均为R,A作纯滚动。绳子不可伸长,其质量不计,斜面倾角,如在O上作用一常力偶矩M,试求:(1)圆柱体O的角加速度?(2)绳子的拉力?(3)轴承O处的反力?(4)圆柱体A与斜面间的摩擦力(不计滚动摩擦)?,
10、30,动力学,解:(1)取轮O为研究对象,虚加惯性力偶,列平衡方程:,(2)取轮A为研究对象,虚加惯性力。,31,动力学,列出平衡方程:,运动学关系:,,将 及运动学关系代入到(1)和(4)式并联立求解得:,32,动力学,代入(2)、(3)、(5)式,得:,33,动力学,方法2 用动力学普遍定理求解,(1)用动能定理求鼓轮角加速度。取系统为研究对象,两边对t求导数:,34,动力学,(2)用动量矩定理求绳子拉力(定轴转动微分方程)取轮O为研究对象,由Joe=MOe得,(3)用质心运动定理求解轴承O处支反力 取轮O为研究对象,根据质心运动定理:,35,动力学,(4)用刚体平面运动微分方程求摩擦力
11、取圆柱体A为研究对象,根据刚体平面运动微分方程,方法3:用动能定理求鼓轮的角加速度 用达朗伯原理求约束反力(绳子拉力、轴承O处反 力 和 及摩擦力)。,36,动力学,例3 均质圆柱体重P,半径R,自O点无滑动地沿倾斜板由静止开始滚动。板与水平成角,试求OA=S时板在O点的约束反力。板重略去不计。,解:圆柱体作平面运动,设其质心加速度为a,虚加惯性力,P,(1)取圆柱体为研究对象:,37,动力学,(2)取系统体为研究对象:,38,动力学,解:绕线轮作平面运动,由,将FJ、MOJ 代入上式,可得,例4 绕线轮重P,半径为R及 r,对质心O的回转半径为,且2=Rr,轮在常力 作用下作纯滚动,已知,不
12、计滚阻,求:(1)轮心的加速度;(2)分析轮纯滚动的条件。,39,动力学,纯滚动的条件:F f N,40,动力学,解:BD作平动,A相对于BD不动,所以:,例5 重W2的板BD由两根等长且平行的细绳悬挂,板上放置重W1且不计大小的物块A。系统从图示位置无初速开始运动,求此瞬时A物不在BD 上滑动的接触面的静摩擦系数。,(1)以物A及BD为研究对象:,x,将FAJ、FCJ 代如得aC=g sin,动力学,(2)以物A为研究对象:,A在BD上不滑动,必须FfN,,42,动力学,解(1)以AB为研究对象:设其质心加速度为aC、角加速度为eAB,则,例6 图示系统,均质杆AB:m1=2m,l;均质圆轮
13、:m2=2m,r;物体G:m3=m。系统开始静止,AB水平。求A端绳突然断开的瞬时物体G和杆AB质心的加速度及O处反力。,43,动力学,(2)以物体G及轮O为研究对象:设物体G的加速度为aG、轮O的角加速度为eO,虚加惯性力:,运动学关系:,动力学,将各惯性力及运动学关系代入(1)(5)式联立解得:,45,动力学,例7.图示机构位于水平面。已知:均质杆AD:m;均质杆AB:L,2m;套筒E至AD杆距离为L/2。系统初始静止,且AE=5L/8。求当AD杆突然受到向右的力F作用时,AB杆的角加速度e及套筒E对AB杆在水平面内的约束反力。不计套筒质量及各处摩擦。,解:AD杆作平动,AB杆作平面运动,
14、(1)分析加速度,(a)以E及AB为研究对象,以套筒E为动点,AB为动系,aa=0,ac=0(图示瞬时wAB=0),46,动力学,(b)以AB为研究对象,设e。以E为基点,则,沿AB,也就是 沿AB。,(c)以AB为研究对象,以A为基点,则,47,动力学,(2)虚加惯性力,48,动力学,(3)以AB为研究对象,将惯性力代入,得:,49,动力学,(4)以整体为研究对象,将惯性力代入,得:,联立解得:,50,动力学,1.物体系统由质量均为m的两物块A和B组成,放在光滑水平面上,物体A上作用一水平力F,试用动静法说明A物体对B物体作用力大小是否等于F?,思考题:,解:,51,动力学,解:,2.质量为M的三棱柱体A 以加速度 向右移动,质量为m的滑块B以加速度 相对三棱柱体的斜面滑动,试问滑块B的惯性力的大小和方向如何?,52,动力学,3.匀质轮重为P,半径为 r,在水平面上作纯滚动。某瞬时角速度,角加速度为,求轮对质心C 的转动惯量,轮的动量、动能,对质心的动量矩,向质心简化的惯性力系主矢与主矩。,解:,53,动力学,本章结束,