《矢量运算法则》PPT课件.ppt

上传人:小飞机 文档编号:5558573 上传时间:2023-07-20 格式:PPT 页数:40 大小:1.13MB
返回 下载 相关 举报
《矢量运算法则》PPT课件.ppt_第1页
第1页 / 共40页
《矢量运算法则》PPT课件.ppt_第2页
第2页 / 共40页
《矢量运算法则》PPT课件.ppt_第3页
第3页 / 共40页
《矢量运算法则》PPT课件.ppt_第4页
第4页 / 共40页
《矢量运算法则》PPT课件.ppt_第5页
第5页 / 共40页
点击查看更多>>
资源描述

《《矢量运算法则》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《矢量运算法则》PPT课件.ppt(40页珍藏版)》请在三一办公上搜索。

1、第1章 矢量分析,一、矢量和标量的定义,二、矢量的运算法则,三、矢量微分元:线元,面元,体元,四、标量场的梯度,六、矢量场的旋度,五、矢量场的散度,七、重要的场论公式,一、矢量和标量的定义,1.标量:只有大小,没有方向的物理量。,矢量表示为:,所以:一个矢量就表示成矢量的模与单位矢量的乘积。,其中:为矢量的模,表示该矢量的大小。为单位矢量,表示矢量的方向,其大小为1。,2.矢量:不仅有大小,而且有方向的物理量。,如:力、速度、电场 等,如:温度 T、长度 L 等,例1:在直角坐标系中,x 方向的大小为 6 的矢量如何表示?,图示法:,力的图示法:,二、矢量的运算法则,1.加法:矢量加法是矢量的

2、几何和,服从平行四边形规则。,a.满足交换律:,b.满足结合律:,三个方向的单位矢量用 表示。,根据矢量加法运算:,所以:,在直角坐标系下的矢量表示:,其中:,矢量:,模的计算:,单位矢量:,方向角与方向余弦:,在直角坐标系中三个矢量加法运算:,2.减法:换成加法运算,逆矢量:和 的模相等,方向相反,互为逆矢量。,在直角坐标系中两矢量的减法运算:,3.乘法:,(1)标量与矢量的乘积:,(2)矢量与矢量乘积分两种定义,a.标量积(点积):,在直角坐标系中,已知三个坐标轴是相互正交的,即,有两矢量点积:,结论:两矢量点积等于对应分量的乘积之和。,推论1:满足交换律,推论2:满足分配律,推论3:当两

3、个非零矢量点积为零,则这两个矢量必正交。,推论1:不服从交换律:,推论2:服从分配律:,推论3:不服从结合律:,推论4:当两个非零矢量叉积为零,则这两个矢量必平行。,b.矢量积(叉积):,含义:两矢量叉积,结果得一新矢量,其大小为这两个矢量组成的平行四边形的面积,方向为该面的法线方向,且三者符合右手螺旋法则。,在直角坐标系中,两矢量的叉积运算如下:,两矢量的叉积又可表示为:,(3)三重积:,三个矢量相乘有以下几种形式:,矢量,标量与矢量相乘。,标量,标量三重积。,矢量,矢量三重积。,a.标量三重积,法则:在矢量运算中,先算叉积,后算点积。,定义:,含义:标量三重积结果为三矢量构成的平行六面体的

4、体积。,注意:先后轮换次序。,推论:三个非零矢量共面的条件。,在直角坐标系中:,b.矢量三重积:,例2:,解:,则:,设,例3:已知,求:确定垂直于、所在平面的单位矢量。,其中:k 为任意实数。,C,A,B,解:在通过A点和B点的直线方程上,任取一点C,对于原点的位置 矢量为,则,三、矢量微分元:线元、面元、体元,例:,其中:和 称为微分元。,1.直角坐标系在直角坐标系中,坐标变量为(x,y,z),如图,做一微分体元。,线元:,面元:,体元:,2.圆柱坐标系,在圆柱坐标系中,坐标变量为,如图,做一微分体元。,线元:,面元:,体元:,3.球坐标系,在球坐标系中,坐标变量为,如图,做一微分体元。,

5、线元:,面元:,体元:,a.在直角坐标系中,x,y,z 均为长度量,其拉梅系数均为1,即:,b.在柱坐标系中,坐标变量为,其中 为角度,其对应的线元,可见拉梅系数为:,在球坐标系中,坐标变量为,其中 均为 角度,其拉梅系数为:,注意:,在正交曲线坐标系中,其坐标变量 不一定都是长度,其线元必然有一个修正系数,这些修正系数称为拉梅系数,若已知其拉梅系数,就可正确写出其线元、面元和体元。,体元:,线元:,面元:,正交曲线坐标系:,四、标量场的梯度,1.标量场的等值面,可以看出:标量场的函数是单值函数,各等值面是互不 相交的。,以温度场为例:,热源,等温面,b.梯度,定义:标量场中某点梯度的大小为该

6、点最大的方向导数,其方向为该点所在等值面的法线方向。,数学表达式:,2.标量场的梯度,a.方向导数:,空间变化率,称为方向导数。,为最大的方向导数。,标量场的场函数为,计算:,在直角坐标系中:,所以:,梯度也可表示:,在柱坐标系中:,在球坐标系中:,在任意正交曲线坐标系中:,在不同的坐标系中,梯度的计算公式:,在直角坐标系中:,五、矢量场的散度,1.矢线(场线):,在矢量场中,若一条曲线上每一点的切线方向与场矢量在该点的方向重合,则该曲线称为矢线。,2.通量:,定义:如果在该矢量场中取一曲面S,通过该曲面的矢线量称为通量。,表达式:,若曲面为闭合曲面:,讨论:,a.如果闭合曲面上的总通量,说明

7、穿出闭合面的通量大于穿入曲面的通量,意味着闭合面内存在正的通量源。,b.如果闭合曲面上的总通量,说明穿入的通量大于穿出的通量,那么必然有一些矢线在曲面内终止了,意味着闭合面内存在负源或称沟。,c.如果闭合曲面上的总通量,说明穿入的通量等于穿出的通量。,3.散度:,a.定义:矢量场中某点的通量密度称为该点的散度。,b.表达式:,c.散度的计算:,在直角坐标系中,如图做一封闭曲面,该封闭曲面由六个平面组成。,矢量场 表示为:,因为:,则:,在 x 方向上的总通量:,在 z 方向上,穿过 和 面的总通量:,整个封闭曲面的总通量:,同理:在 y方向上,穿过 和 面的总通量:,该闭合曲面所包围的体积:,

8、通常散度表示为:,4.散度定理:,物理含义:穿过一封闭曲面的总通量等于矢量散度的体积分。,柱坐标系中:,球坐标系中:,正交曲线坐标系中:,直角坐标系中:,常用坐标系中,散度的计算公式,六、矢量场的旋度,1.环量:,在矢量场中,任意取一闭合曲线,将矢量沿该曲线积分称之为环量。,可见:环量的大小与环面的方向有关。,2.旋度:,定义:一矢量其大小等于某点最大环量密度,方向为该环 的法线方向,那么该矢量称为该点矢量场的旋度。,表达式:,旋度计算:,以直角坐标系为例,一旋度矢量可表示为:,场矢量:,其中:为x 方向的环量密度。,旋度可用符号表示:,其中:,可得:,同理:,所以:,旋度公式:,为了便于记忆,将旋度的计算公式写成下列形式:,类似地,可以推导出在广义正交坐标系中旋度的计算公式:,对于柱坐标、球坐标,已知其拉梅系数,代入公式即可写出旋度的计算公式。,3.斯托克斯定理:,物理含义:一个矢量场旋度的面积分等于该矢量沿此曲面周界的曲线积分。,七、重要的场论公式,1.两个零恒等式,任何标量场梯度的旋度恒为零。,任何矢量场的旋度的散度恒为零。,在圆柱坐标系中:,在球坐标系中:,在广义正交曲线坐标系中:,2.拉普拉斯算子,在直角坐标系中:,3.常用的矢量恒等式,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号