[信息与通信]MIMO空时处理技术.ppt

上传人:sccc 文档编号:5614773 上传时间:2023-08-02 格式:PPT 页数:104 大小:3.46MB
返回 下载 相关 举报
[信息与通信]MIMO空时处理技术.ppt_第1页
第1页 / 共104页
[信息与通信]MIMO空时处理技术.ppt_第2页
第2页 / 共104页
[信息与通信]MIMO空时处理技术.ppt_第3页
第3页 / 共104页
[信息与通信]MIMO空时处理技术.ppt_第4页
第4页 / 共104页
[信息与通信]MIMO空时处理技术.ppt_第5页
第5页 / 共104页
点击查看更多>>
资源描述

《[信息与通信]MIMO空时处理技术.ppt》由会员分享,可在线阅读,更多相关《[信息与通信]MIMO空时处理技术.ppt(104页珍藏版)》请在三一办公上搜索。

1、MIMO空时处理技术,3.5 分集与均衡,分集兼听则明宏分集与微分集微分集:时间分集 频率分集 空间分集 角度分集 极化分集,图3.39 分集,分集的合并,选择性合并最大比值合并等增益合并,选择性合并,最大比值合并,每路信号的权值都正比于信号的信噪比,等增益合并,把最大比合并中的每路分集信号的加权值,均衡减少符号间的干扰,时域均衡频域均衡,空时处理技术背景,空时处理始终是通信理论界的一个活跃领域。在早期研究中,学者们主要注重空间信号传播特性和信号处理,对空间处理的信息论本质探讨不多。上世纪九十年代中期,由于移动通信爆炸式发展,对于无线链路传输速率提出了越来越高的要求,传统的时频域信号设计很难满

2、足这些需求。工业界的实际需求推动了理论界的深入探索。,空时处理技术现状,纵观MIMO技术的发展,可以将空时编码的研究分为三大方向:空间复用、空间分集与空时预编码技术,如图11.1所示。,本章内容,本章分六个部分介绍,首先介绍多天线信息论的基础知识;其次讨论空时块编码技术;第三节阐述分层空时码的结构和常用译码算法;第四节详细介绍了空时格码的构造方法和性能,第五节概要介绍了空时预编码技术的基本原理。最后说明MIMO技术在宽带移动通信系统中的应用。,11.1 多天线信息论简介,多天线分集接收是抗衰落的传统技术手段,但对于多天线发送分集,长久以来学术界并没有统一认识。Telatar首先得到了高斯信道下

3、多天线发送系统的信道容量和差错指数函数。他假定各个通道之间的衰落是相互独立的。几乎同时,Foschini和Gans得到了在准静态衰落信道条件下的截止信道容量(Outage Capacity)。此处的准静态是指信道衰落在一个长周期内保持不变,而周期之间的衰落相互独立,也称这种信道为块衰落信道(Block Fading)。Foschini和Gans的工作,以及Telatar的工作是多天线信息论研究的开创性文献。在这些著作中,他们指出,在一定条件下,采用多个天线发送、多个天线接收(MIMO)系统可以成倍提高系统容量,信道容量的增长与天线数目成线性关系。,假设点到点MIMO系统,具有nT个发送天线,n

4、R个接收天线。我们考虑采用空时编码的离散时间复基带线性系统模型。系统结构如下图所示。假设每个符号周期系统发送的信号为nT1维列向量X,其中第i个分量xi表示从i个天线发送的信号。由信息理论可知,对于高斯信道,最优的输入信号分布也为高斯分布。因此假设发送信号向量的每个分量都服从0均值独立同分布(i.i.d.)高斯随机变量。发送信号协方差矩阵可以表示为:其中,表示数学期望,H表示共轭转置。假设系统发射总功率为P,则可以表示为:其中,表示矩阵的迹。,11.1.1 MIMO系统信号模型,11.1.1 MIMO系统信号模型,MIMO系统原理,11.1.1 MIMO系统信号模型,一般的,接收机未知信道响应

5、,因此可以假设每个天线的发射功率相同为P/nT。则发射信号的协方差矩阵可以表示为:其中,表示 维单位矩阵。为了简化表示,假设发送信号带宽足够窄,则系统信道响应为平坦衰落。信道响应矩阵可以表示为 维的复矩阵H。矩阵中的每个元素hij表示从第j个发送天线到第i个接收天线的信道响应系数。为了归一化目的,假设每个接收天线的接收信号功率等于所有发送天线的信号总功率。也就是说,忽略大尺度衰落、阴影衰落和天线增益造成的信号放大或衰减。由此可以得到信道响应矩阵的归一化约束:,11.1.1 MIMO系统信号模型,上式对于固定衰落系数或随机衰落均成立,若信道衰落是随机变化的,则上式左端需要取数学期望。接收机的噪声

6、向量可以表示为nR1维列向量n。该向量的分量都是0均值独立同分布高斯随机变量,实部与虚部相互独立,且具有相同的方差。则接收噪声向量的协方差矩阵表示为:接收信号也可以表示为nR1维列向量r,每个分量表示一个接收天线收到的信号。由于每个天线的接收功率等于所有天线的发送总功率,因此可以定义系统信噪比为总发送功率与每天线的噪声功率之比,它独立于发送天线数目nT,可以表示为:,11.1.1 MIMO系统信号模型,因此接收向量可以表示为:由此可得,接收信号的协方差矩阵为:,11.1.2 MIMO系统信道容量推导,根据信息论表述,系统信道容量可以定义为在差错概率任意小条件下,系统获得的最大数据速率。一般的,

7、假设接收机未知信道响应矩阵,而接收机却可以精确估计信道衰落。对信道响应矩阵H进行奇异分解可得:其中,D是nRnT非负对角矩阵,U和V分别 nRnR是nTnT和的酉矩阵。这两个矩阵满足条件 和。对角矩阵D的元素是矩阵HHH的特征值的非负平方根。定义矩阵HHH的特征值为,即满足如下关系式:其中nR1维向量y是特征向量。,11.1.2 MIMO系统信道容量推导,将H矩阵的分解形式代入接收信号的矩阵表达式得:引入如下的矩阵变换:可以将上式化简为:令矩阵H的奇异值为,r为H的秩,代入上式,得到如下关系式:,11.1.2 MIMO系统信道容量推导,由上式可知,接收信号分量 并不依赖于发送信号,即信道增益为

8、0。而只有r个信号分量 与发送信号有关。则上述MIMO系统可以看作r个独立的并行子信道的叠加。每个子信道的增益为H矩阵的一个奇异值。信号向量、以及 的协方差矩阵与迹如下:可见矩阵变换前后信号向量的功率相同。,11.1.2 MIMO系统信道容量推导,如前所述,假设每个天线的发送功率为P/nT,利用仙农信道容量公式,可得MIMO系统的信道容量为:其中W是每个子信道的带宽,是信道矩阵H的奇异值。由此可见,MIMO信道容量与信道响应矩阵有关。令Q满足下式:,11.1.2 MIMO系统信道容量推导,令m满足下式:是Q矩阵的特征值,则有:求解上述方程组,就可以得到信道矩阵的奇异值。令,为Q矩阵的特征多项式

9、,该多项式的阶数为 m,可以分解为如下的形式:其中 是特征多项式的根,也是信道响应矩阵的奇异值。,11.1.2 MIMO系统信道容量推导,将 代入上式可得:因此MIMO信道容量公式也可以表示为:下面介绍另一种MIMO信道容量的推导方法。一般的,MIMO信道容量可以表述为如下通用表达式:,11.1.2 MIMO系统信道容量推导,其中,向量,则该向量的协方差矩阵可以表示为:定义向量x与r的协方差矩阵为:上面的推导用到了x与n相互独立的假设。一般的对于分块矩阵,有如下的行列式计算定理:,11.1.2 MIMO系统信道容量推导,故有:代入MIMO信道容量通用公式得:,11.1.3 随机信道的MIMO系

10、统容量,在实际系统中,信道响应矩阵常常是随机矩阵。一般的,矩阵的每个系数服从Rayleigh分布或Rice分布。我们主要讨论的信道类型有:1.信道响应矩阵是随机矩阵,在每个符号周期内保持不变,而符号之间随机变化,这种信道称为快衰落信道;2.信道响应矩阵是随机矩阵,在固定数目的符号周期内保持不变,且持续时间远小于整个发送时间,这种信道称为块衰落信道;3.信道响应矩阵是随机矩阵,且在整个发送时间都保持不变,这种信道称为慢衰落或准静态衰落信道。,11.1.3 随机信道的MIMO系统容量,我们主要分析这三种信道下的MIMO系统信道容量。首先考察单发单收快(块)衰落系统。此时信道响应服从自由度为2的 分

11、布,可以表述为,其中z1和z2都是0均值独立高斯随机变量,方差都为1/2。则对于这种单发单收系统信道容量可以表示为:数学期望是对随机变量 进行的。对于MIMO快衰落信道,采用奇异值分解方法得到的系统容量为:,11.1.3 随机信道的MIMO系统容量,其中Q矩阵定义为:对于快衰落信道,由于信道响应是遍历随机过程,因此可以对随机矩阵H取数学期望。当天线数目较大时,为了便于MIMO信道容量的计算,可以利用拉盖尔(Laguerre)多项式展开得:其中,表示k阶拉盖尔多项式,定义为:,11.1.3 随机信道的MIMO系统容量,记,增加m和n而保持 不变,则用m归一化的信道容量可以表述为:其中:接着,考察

12、准静态信道的MIMO系统容量。在准静态信道响应条件下,整个发送时间只有一个信道响应矩阵,因此这种信道是非遍历随机过程。严格意义上的仙农信道容量为0。,11.1.3 随机信道的MIMO系统容量,但如果引入截止(Outage)概率,表征系统能够达到某个容量的概率,则仍然可以刻画这种信道的系统容量。由此,对于准静态信道,需要引入截止容量概念。给定系统发送容量R,则系统的截止容量可以定义为:这就是Foschini等人引入的截止容量概念。在高信噪比条件下,截止容量概率与误帧率相同。在准静态衰落信道下,可以通过Monte Carlo方法进行仿真,求得信道容量。下图给出了信噪比Eb/N0=15dB条件下,不

13、同天线数目对应的信道容量累积分布函数(CCDF)以及在nT=nR=8条件下,不同信噪比对应的累积分布函数。,11.1.3 随机信道的MIMO系统容量,SNR为15dB时,准静态信道的信道容量累积分布函数,nT=nR=8时不同信噪比的MIMO系统信道容量,11.2 空时块编码(STBC),前面介绍了MIMO系统信息论的一些基础知识,本节开始我们介绍一类高性能的空时编码方法空时块编码(Space Time Block Code)。STBC编码最先是由Alamouti引入的,采用了简单的两天线发分集编码的方式。这种STBC编码最大的优势在于,采用简单的最大似然译码准则,可以获得完全的天线增益。Tar

14、okh进一步将2天线STBC编码推广到多天线形式11.27,提出了通用的正交设计准则。,11.2.1 两天线空时块码,1.Alamouti STBC编码 在这种编码方案中,每组m比特信息首先调制为M=2m进制符号。然后编码器选取连续的两个符号,根据下述变换将其映射为发送信号矩阵。天线1发送信号矩阵的第一行,而天线2发送信号矩阵的第二行。编码器结构如下图所示。,11.2.1 两天线空时块码,由图可知,Alamouti空时编码是在空域和时域上进行编码。令天线1和2的发送信号向量分别为:这种空时编码的关键思想在于两个天线发送的信号向量相互正交,编码矩阵具有如下性质:,Alamouti空时块编码器结构

15、,11.2.1 两天线空时块码,其中I2是22的单位矩阵。假设接收机采用单天线接收。发送天线1和2的块衰落信道响应系数为:在接收端,相邻两个符号周期接收到的信号可以表示为:其中,n1和n2表示第一个符号和第二个符号的加性白高斯噪声样值。这种两发一收的接收机结构如下图所示:,11.2.1 两天线空时块码,2发1收STBC译码器结构,11.2.1 两天线空时块码,2.STBC最大似然译码(MLD)算法 假设接收机可以获得理想信道估计,则最大似然译码算法要求在信号星座图上最小化如下的欧式距离度量:其中 都是星座图上的信号点。将上式展开可得:,11.2.1 两天线空时块码,由于上式中第一项是公共项,与

16、信号点无关,可以忽略,这样可得最大似然译码判决准则为:其中,C表示调制符号对的组合,是判决统计量,表示为:由此可知,给定信道响应,则两个判决统计量分别只是各自发送信号的函数。则最大似然译码准则可以分解为独立的两个准则:,11.2.1 两天线空时块码,当采用MPSK调制方式时,对于所有的信号点 都有:是常量,因此最大似然判决准则可以进一步简化为:上述MLD算法可以推广到多个接收天线的情况:,11.2.1 两天线空时块码,对于MPSK星座,多个接收天线 的MLD可以进一步简化。下图给出了几种Alamouti编码方案在准静态衰落信道下的系统性能。仿真中接收端采用理想信道估计,调制方式是相干BPSK调

17、制。由图可知,2发1收Alamouti编码的分级增益与1发2收最大比合并收分集系统的分级增益相同,但信噪比损失3dB。这主要是由于在Alamouti编码系统中,每个天线的发送信号功率是1发2收分集接收系统的发送信号功率的一半造成的。如果将每天线的发射功率提高一倍,则两者的系统性能相同。同理对于2发2收Alamouti系统和1发4收系统也有同样的结果。一般的,2发nR收Alamouti系统获得的分集增益与1发2nR收分集系统所获得的增益相同。,11.2.1 两天线空时块码,Alamouti编码设计的关键在于保证两天线发送信号序列之间的正交性。因此Tarokh将正交设计思想推广到多个发送天线,提出

18、了一般的正交空时块码设计方法11.27。这些STBC码可以获得完全的分集增益,并且只需要利用线性信号处理进行简单的最大似然译码。,Alamouti编码的系统性能,11.3 分层空时码,分层空时码(Layer Space-Time Codes,简称LST)最早是贝尔实验室的Foschini等人提出的11.10。他们最初提出的对角化分层空时码可以达到MIMO信道容量的下界。分层空时码最大优点在于允许采用一维的处理方法对多维空间信号进行处理,因此极大的降低了译码复杂度。一般的,分层空时码的接收机复杂度与数据速率成线性关系。本节我们讨论现有的几种分层空时码的基本结构,然后重点介绍V-BLAST的几种译

19、码算法。,11.3.1 分层空时码的分类与结构,分层空时码实际上描述了空时多维信号发送的结构,它可以和信道编码进行级联。最简单的未编码分层空时码就是著名的V-BLAST,即垂直结构的分层空时码(VLST)。它的编码方式如下图所示,比较简单。如果与编码器结合,可以得到各种结构的分层空时码。,VLST的结构,11.3.1 分层空时码的分类与结构,HLST的两种结构,11.3.1 分层空时码的分类与结构,HLST只利用了时域上的交织作用,如果采用空时二维交织,可以获得更好的性能。下图给出了对角化分层空时码(DLST)和螺旋分层空时码(TLST)的结构,他们采用了空时二维交织。DLST结构中,每一层的

20、编码调制符号流沿着发送天线进行对角线分布,因此得名。,DLST和TLST的一般结构,11.3.1 分层空时码的分类与结构,这种处理可以分为两步,以nT=4为例,第一步处理,各层数据之间要引入相对时延,对应的符号矩阵为:第二步处理,每个天线沿对角线发送符号,因此符号矩阵为:,11.3.1 分层空时码的分类与结构,由于DLST引入了空间交织,因此它的性能要比VLST和HLST更好。但由于在矩阵的左下方引入了一些0,导致码率或频谱效率小于1,有一定损失。为了消除这种损失,可以采用螺旋分层空时码(TLST)结构。以nT=4为例,这种处理对应的符号矩阵为:,11.3.2 VLST的接收迫零算法,分层空时

21、码的译码有多种算法。最优算法当然是最大似然译码算法。但MLD算法是指数复杂度,无法实用化,因此学者们提出了各种简化算法。其中常用的检测算法包括:迫零(ZF)算法、QR分解算法以及MMSE算法。本小节我们介绍ZF算法。ZF算法的迭代过程如下:初始化:迭代过程:,11.3.2 VLST的接收迫零算法,其中,表示自然序数 的某种排列,H+表示Moore-Penrose广义逆,表示令 列为0得到的矩阵的广义逆,表示矩阵 的第j行,函数表示根据星座图对检测信号进行硬判决解调。,11.3.2 VLST的接收迫零算法,上述算法中的干扰抵消顺序是根据每次迭代的广义逆矩阵接收列向量信号能量来排序的,这种排序是一

22、种本地最优化方法。下图给出了准静态衰落信道,QPSK调制情况下,2发2收、2发4收和2发8收系统采用迭代迫零算法检测的BER性能。由图可知,随着接收天线数目的增加,分集增益越来越大,系统性能得到了极大改善。,11.3.2 VLST的接收迫零算法,不同接收天线数目采用迫零算法的性能比较,11.3.3 VLST的接收QR算法,一般的,当信道响应矩阵H满足 条件时,则矩阵可以进行QR分解,得 其中,UR是nRnT酉矩阵,而R是nTnT的上三角矩阵,故 表示白噪声向量经过正交变换后的噪声向量,上面的表达式还可以写成以下的形式:根据系数矩阵的上三角特性,可以采用迭代方法从下到上逐次解出各个发送信号分量:

23、,11.3.3 VLST的接收QR算法,其中 函数表示根据星座图对检测信号进行硬判决解调。,11.3.4 VLST的接收MMSE算法,另一种常用的VLST检测算法是MMSE算法,即最小均方误差算法。该算法的目标函数是最小化发送信号向量xt与接收信号向量线性组合wHrt之间的均方误差,即:其中w是nRnT的线性组合系数矩阵,由于上述目标函数是凸函数,因此可以求其梯度得到最优解。,11.3.4 VLST的接收MMSE算法,在上式推导过程中,利用了以下三个关系式:令,得MMSE检测的系数矩阵为:MMSE检测与干扰抵消组合可以得到如下的算法迭代流程:初始化:,11.3.4 VLST的接收MMSE算法,

24、当 时,进行如下的迭代操作:下图给出了nT=nR=4条件下,未编码的VBALST系统采用QR分解、MMSE检测和MMSE迭代干扰抵消(排序和不排序)算法的性能。由图可知,当采用排序和干扰抵,11.3.4 VLST的接收MMSE算法,消的MMSE检测时,系统性能最好。,几种VBALST检测算法的性能比较,11.4 空时格码(STTC),空时块码能够获得分集增益,但不能提供编码增益。分层空时码能够极大的提高系统的频谱效率,但一般的,它不能获得完全的分集增益。Tarokh、Seshadri和Calderbank11.26首次提出将信道编码、调制及收发分集联合优化的思想,构造了空时格码(STTC)。S

25、TTC既可以获得完全的分集增益,又能获得非常大的编码增益,同时还能提高系统的频谱效率。本节我们介绍STTC编码器的结构,设计和优化准则,并通过仿真评估STTC码的性能。,11.4.1 STTC信号模型,STTC数学模型可以用下式表示:,STTC 编码系统,11.4.1 STTC信号模型,其中,Nf是数据帧长,维接收信号矩阵 表示一帧的接收数据,维发送信号矩阵 表示一帧的发送数据,维信道响应矩阵 表示一帧时间内的信道响应,维矩阵 为噪声矩阵。,11.4.2 STTC编码器结构,STTC编码器的一般结构,11.4.2 STTC编码器结构,如上图,t时刻第i个天线编码器的输出符号 可以表示为:STT

26、C编码器用生成多项式描述 如下:STTC编码器对应的多项式生成矩阵为:,11.4.3 STTC编码设计准则,定义 维的Hermitian矩阵,如果,满足,则称矩阵是非负定的。一个 维的矩阵,如果满足 的条件,则称为酉矩阵。一个 维的矩阵,如果满足 的条件,则称它为矩阵 的平方根。采用最大似然(ML)译码准则,即:其中 表示矩阵 的Frobenius范数,即,上式左端是均值为0的高斯随机变量,在理想估计条件下,右端为常数,定义修正的平方欧式距离 为:则在给定信道响应矩阵的条件下的ML译码错误概率为:,1.准静态衰落信道条件下STTC设计准则 在Rayleigh衰落信道下,则上式变为:,在高信噪比

27、条件下,可以表示为:STTC编码的收发分集增益为,与信噪比成负指数关系,而在相同分集增益条件下,与未编码系统相比,STTC的编码增益为。因此STTC编码的性能主要由分集增益和编码增益决定。从而可以得到准静态衰落信道条件下STTC码的设计准则:(1)秩准则(2)行列式准则,2.快衰落信道条件下STTC设计准则快衰落信道条件下的成对差错概率为:快衰落信道条件下,STTC编码的收发分集增益为 与信噪比成负指数关系,而在相同分集增益条件下,与未编码系统相比,STTC的编码增益为。因此STTC编码的性能也主要由分集增益和编码增益决定。从而可以得到快衰落信道条件下STTC码的设计准则:(1)距离准则(2)

28、乘积准则,11.4.4 STTC编码的性能,(a)两发1收条件下各种状态的TSC码性能(b)两发两收条件下各种状态的TSC码性能(a)(b),11.5 空时预编码,空时预编码技术利用接收端反馈的信道统计/量化信息,在发送端通过预编码方式,对每个天线功率进行最优分配,抑制天线与小区间干扰,提高系统容量。,11.5.1 线性预编码,空时线性预编码的广义系统结构如下图所示,线性预编码包括波束成形与有限反馈两种典型技术。,11.5.1 线性预编码,1.最优波束成形设计 根据图11.18的系统结构,假设发端有个天线,收端有个天线,在平坦衰落信道中单载波MIMO预编码系统模型可以表示为如下公式。,11.5

29、.1 线性预编码,线性波束成形的优化设计问题可以归结为最小化加权均方误差,此时基于线性预编码和检测器,可以将信道响应矩阵等效分解为并行的特征子信道。选择不同的加权系数,可以得到各种优化准则。其中广义加权MMSE准则可以作为统一的设计框架。(1)广义加权MMSE准则,11.5.1 线性预编码,(1)广义加权MMSE准则 上式是凸优化问题,满足KKT条件,利用Lagrange对偶方法将原问题转化如下。,因此可以根据下列条件求最优解,11.5.1 线性预编码,(1)广义加权MMSE准则,图11.19 最优线性预编码分解结构,11.5.1 线性预编码,2.有限反馈预编码 在基于码本的预编码方案中,码本

30、集合可以根据一定的信道模型和优化准则实现进行离线训练,不依赖于当前的信道状态。当收端进行信道估计时,将CSI估计与码本进行匹配搜索,按照一定的距离度量,获得最优码本序号,然后通过反馈信道发送码本序号。发端基于接收到的码本索引,进行预编码发送。这种方式不直接对信道响应量化,因此具有较好的鲁棒性,在B3G和4G移动通信系统中得到了广泛应用。,11.5.1 线性预编码,上述预编码方案的关键在于码本构造方法,为了保证发送天线的等功率约束,通常采用酉预编码码本。从码本结构看,可以分为码本向量和码本矩阵两种。前者主要应用于MISO场景,即空时编码与预编码组合,包括智能天线、波束成形等,而后者主要应用于MI

31、MO场景,即空间复用与预编码组合。,11.5.1 线性预编码,对于预编码向量,典型的码本构造方法包括矢量量化(VQ)和Grassman线封装两种方法11.36-11.37。对于预编码矩阵,则前述的VQ方法仍然适用,而Grassman线封装方法变换为Grassman流形封装方法。随机矢量量化(RVQ)也能够推广到预编码矩阵场合下。,11.5.2 非线性预编码,一般的,非线性预编码(THP)具有比线性预编码更好的性能,在高信噪比区域能够趋近MIMO信道容量。,11.5.2 非线性预编码,下图给出了44MIMO不同预编码算法的误符号率性能。如图所示,MIMO-THP性能好于线性预编码、SVD分解和基

32、于V-BLAST的MIMO-DFE。,11.5.3 多用户预编码,相对单用户(SU-MIMO)而言,MU-MIMO能够利用空时频与用户四维进行信号优化与设计,除前面提到的分集/复用/编码/天线增益外,还能够获得多用户分集增益。下行MU-MIMO,从信息论观点看,发送信号的优化更具有挑战性,必须将理论上最佳的预干扰抵消技术脏纸编码(Dirty Paper Coding,DPC)、隐含的用户调度和功率分配算法结合,才能够逼近MU-MIMO-BC的容量界11.33。,11.5.3 多用户预编码,下行多用户MIMO场景,11.5.3 多用户预编码,假设块衰落信道和同构网络,即所有用户配置M个天线,信噪

33、比相同,固定基站天线数目N和发射功率P,则采用DPC的MIMO-GBC渐近比例和容量满足下列关系。,上述结果表明,当基站端获得全部CSIT时,系统和容量与基站天线数目N成正比,并且通过仔细选择发送用户集合,可以额外获得多用户分集增益,。,11.6 MIMO技术在宽带移动通信系统中的应用,根据线性系统互易原理,在一个线性系统中,分集的位置是可以互易的,亦即它可根据实际需要,放在接收端,称为分集接收,也可以放在发送端,称它为发送分集(分集发送)。严格的说,实际的移动通信系统,包含复杂时变移动信道,并不完全遵从线性规律,充其量只能算是近似的线性时变系统。因此在这个复杂系统中,互易原理只能认为近似的成

34、立,其性能上要打一定折扣,从这个意义上讲发送分集性能不如接收分集性能。,11.6.1 发送分集分类,根据是否需要提供信道状态信息,是否需要在发送与接收之间建立反馈电路,可以将发送分集划分为开环与闭环两大类型。开环发送分集原理 现有的发送分集有空时发送分集STTD(Space-Time Transmit Diversity)、正交发送分集OTD(Orthogonal Transmit Diversity)、空时扩频STS(Space-Time Spreading)发送分集、时间切换发送分集TSTD(Time-Switch Transmit Diversity)、延时发送分集DTD(Delay T

35、ransmit Diversity)等等。,闭环发送分集,需要在发送与接收之间建立反馈回路、并利用这一反馈回路传送信道状态信息。闭环发送分集原理 比较典型的闭环发送分集有:选择发送分集STD与发送自适应阵列TXAA(Transmit Adaptive Array)等。,11.6.2 发送分集在WCDMA系统中的应用,WCDMA建议定义了两种开环发送分集,时间切换发送分集TSTD和空时发送分集STTD和两种闭环发送分集,闭环分集的差异在于两种反馈模式的参数不同。1.空时发送分集(STTD)WCDMA系统DPCH的STTD编码原理,STTD编码过程原理 2.时间切换发送分集(TSTD)在WCDMA

36、中,同步信道采用TSTD,根据时隙号的奇偶,两个天线轮流交替发送主同步码PSC和辅同步码SSC。TSTD方式可以提高用户端正确同步的概率和缩短同步搜索的时间,它的主要特点是可以很简单的实现与最大比值合并(MRC)性能相当的效果。,3.闭环发送分集DPCH 信道的闭环发送分集原理图,WCDMA系统的DPCH信道闭环发送分集分为两类模式,它们的参数如下列表所示。模式1和模式2的最大区别在于模式1的反馈加权因子和既包含相位调正信息也包含幅度调正信息。,11.6.3 发送分集在CDMA2000系统中的应用,CDMA2000标准中也定义了两种开环发送分集:正交发送分集(OTD)和空时扩展发送分集(STS

37、)和两类闭环发送分集:选择式发送分集(STD)和发送分集天线阵(TXAA)。1.正交发送分集(OTD)CDMA2000中正交发送分集OTD原理,2.空时扩展发送分集(STS)CDMA2000中空时扩展发送分集(STS)原理,输入数据 按奇偶分为并行两组 与,分别乘以Walsh函数 和,复乘后乘以归一化系数。两路发送信号分别为:3.选择式发送分集(STD)选择式发送分集(STD)是开环的时间切换发送分集TSTD方式的进一步扩展。移动台从基站每个天线发送的公共导频信号中估计出接收到的各发射天线信号能量(或信噪比),并通过一个反馈回路将上述信道状态信息反馈给基站,再由基站根据反馈信息选择能给移动台最

38、大接收能量(或信噪比)的发送天线。选择式发送分集在闭环发送分集中结构最为简单,但性能也是最差。,4.发送自适应阵列发送分集(TXAA)CDMA2000中发送自适应阵列发送分集(TXAA)原理,11.6.4 MIMO技术在LTE系统中的应用,1.发分集技术LTE中的发分集技术主要包括空频分组码(SFBC)和频率切换发分集(FSTD)两种技术。SFBC与STBC原理相同,都是基于Alamouti编码。,11.6.4 MIMO技术在LTE系统中的应用,2.波束成形技术 LTE系统的PDSCH信道可以采用波束成形技术,主要包括两种方式。(1)闭环rank1预编码rank1预编码既可以看作空间复用,也可

39、以作为波束成形方案。在此模式下,UE向eNodeB发送信道信息,表征用于波束成形操作的合适预编码方案。(2)基于UE专用RS进行波束赋形在此模式下,UE不反馈与预编码有关的信息。eNodeB需要利用上行信道信息(例如DoA),进行波束赋形。,11.6.4 MIMO技术在LTE系统中的应用,3.空间复用技术LTE系统中空间复用技术包括两类:预编码与CDD。(1)预编码模式LTE系统的PDSCH信道可以采用基于码本的预编码技术,提高系统容量。LTE码本为酉矩阵生成的码本,具有如下性质。恒模性嵌入性简易性,11.6.4 MIMO技术在LTE系统中的应用,(2)CDD模式在开环空间复用场景下,UE只反

40、馈信道有效层数(Rank),不反馈合适的预编码矩阵。此时如果Rank大于1,则LTE使用循环延迟分集(CDD)。CDD在多个天线上相同的子载波单元发送相同的OFDM符号,但每个天线有不同的时延。由于发送时延是在添加CP前引入的,因此具有循环移位特性,因此命名为CDD。,11.7 本章小结,从技术特征看,可以把多天线技术划分为空间复用、空间分集和预编码技术三大类,人们从检测算法、获取CSI的位置、天线配置以及能够获取的性能增益等方面进行了广泛深入的研究,提出了多种MIMO技术方案。图11.33给出了近年来学术界提出的多种代表方案,文献11.38扼要分析了各种方案的特点,感兴趣的读者可以查阅该综述

41、的参考文献,了解各个方案的技术细节。,11.7 本章小结,第十章介绍的OFDM技术能将频率选择性衰落信道转化为多个平坦衰落信道,MIMO与OFDM结合,能够发挥两种技术的优点,是4G移动通信技术的必然选择,MIMO-OFDM技术已经在LTE、WiMax等B3G移动通信系统中得到了广泛应用。,参考文献,11.1 S.M.Alamouti,“A simple transmit diversity technique for wireless communications,”IEEE Journal Select.Area Commun.,Vol.16,No.8,pp.1451-1458,Oct.1

42、998.11.2 S.Baro,G.Bauch and A.Hansmann,“Improved codes for space-time trellis-coded modulation,”IEEE Commun.Letters,Vol.4,No.1,pp.20-22,Jan.2000.11.3 A.Benjebbour,H.Murata and S.Yoshida,“Performance of iterative successive detection algorithm with space-time transmission,”VTC2001,Spring,Vol.2,pp.118

43、7-1191,May 2001.11.4 W.J.Choi,R.Negi and J.M.Cioffi,“Combined ML and DFE decoding for the V-BLAST system,”ICC2000,Vol.3,pp.1143-1148,June 2000.11.5 R.T.Derryberry,S.D.Gray,D.M.Ionescu,G.Mandyam,B.Raghothaman,“Transmit diversity in 3G CDMA systems,”IEEE Communications Magazine,Vol.40,No.4,pp.68-75,Ap

44、r.2002.11.6 S.N.Diggavi,N.Al-Dhahir,A.Stamoulis and A.R.Calderbank,“Great Expectations:The Value of Spatial Diversity in Wireless Networks,”Proceedings of IEEE,Vol.92,No.2,pp.219-270,Feb.2004.,11.7B.Dong,X.Wang and A.Doucet,“A New Class of Soft MIMO Demodulation Algorithms,”IEEE Trans.Signal Proc.,V

45、ol.51,No.11,pp.2752-2763,Nov.2003.11.8 H.El Gamal,G.Caire and M.O.Damen,“Lattice Coding and Decoding Achieve the Optimal Diversity-Multiplexing Tradeoff of MIMO Channels,”IEEE Trans.Inform.Theory,Vol.50,No.6,pp.968-985,June 2004.11.9M.P.Fitz,J.Grimm and S.Siwamogsatham,“A new view of performance ana

46、lysis techniques in correlated Rayleigh fading,”WCNC 1999,Vol.1,pp.139-144,Sept.1999.11.10 G.J.Foschini,“Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,”Bell Labs Technical Journal,pp.41-59,Autumn 1996.11.11G.J.Foschini,Jr.and M.J

47、.Gans,“On limits of wireless communication in a fading environment when using multiple antennas,“Wireless Personal Communication,Vol.6,No.2,pp.41-59,Autumn 1996.11.11 J.Grimm,Transmitter Diversity Code Design for Achieving Full Diversity on Rayleigh Fading Channels,Ph.D.thesis,Purdue University,Dece

48、mber 1998.11.13J.C.Guey,M.P.Fitz et.al.,“Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels,”IEEE Trans.Commun.,Vol.47,No.4,pp.527-537,April 1999.11.14 R.Hammons and H.El Gamal,“On the theory of space-time codes for PSK modulation”,IEEE Transactions

49、on Information Theory,Vol.46,No.2,pp.524-542,Mar.2000.,11.15B.Hassibi and B.M.Hochwald,“High-Rate Codes That Are Linear in Space and Time,”IEEE Trans.Inform.Theory,Vol.48,No.7,pp.1804-1824,July 2002.11.16B.M.Hochwald and T.L.Marzetta,“Unitary space-time modulation for multiple-antenna communications

50、 in Rayleigh flat fading,”IEEE Trans.Inform.Theory,Vol.46,No.2,pp.543-564,Mar.2000.11.17B.M.Hochwald and S.T.Brink,“Achieving Near-Capacity on a Multiple-Antenna Channel,”IEEE Trans.Commun.,Vol.51,No.3,pp.389-399,Mar.2003.11.18T.H.Liew and L.Hanzo,“Space-Time Codes and Concatenated Channel Codes for

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号