《区组设计》PPT课件.ppt

上传人:牧羊曲112 文档编号:5629608 上传时间:2023-08-03 格式:PPT 页数:55 大小:1.39MB
返回 下载 相关 举报
《区组设计》PPT课件.ppt_第1页
第1页 / 共55页
《区组设计》PPT课件.ppt_第2页
第2页 / 共55页
《区组设计》PPT课件.ppt_第3页
第3页 / 共55页
《区组设计》PPT课件.ppt_第4页
第4页 / 共55页
《区组设计》PPT课件.ppt_第5页
第5页 / 共55页
点击查看更多>>
资源描述

《《区组设计》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《区组设计》PPT课件.ppt(55页珍藏版)》请在三一办公上搜索。

1、3.1 随机化完全区组设计3.2 平衡不完全区组设计3.3 格子设计,第三章 区组设计,3.1 随机化完全区组设计,由于试验条件不均匀,比如:试验场地、人员、设备、试验材料等存在一些差异,可能会对试验结果造成不良影响。,为解决这样的问题,把全部试验单元分为若干个区组,使得每个区组内各试验单元之间的差异尽可能的小,而区组间允许存在一些差异,这样的试验设计称为区组设计。划分区组也是试验设计的基本原则之一。,区组设计的例子,区组,区组,区组,某作物品种比较试验,有8个品种(含对照),设3次重复。,贫瘠,肥沃,区组设计的例子,随机化区组设计的一般定义,随机化区组设计的目的,就是把区组引起的变异从随机误

2、差的变异中分离出来,降低了随机误差的大小,提高统计分析的可靠性。,随机化区组设计的一般定义,随机化区组设计应用于单因子试验或复因子试验均可,可以考察因子间的交互作用。,随机化区组设计是应用最为广泛的试验设计方法之一,贯彻了试验设计的三大原则,试验的精确度比较高。,随机化完全区组设计的数据,随机化完全区组设计的统计模型,总平方和分解公式,随机化完全区组设计的方差分析表,随机化完全区组设计的几点讨论,随机区组设计统计分析方差分析,Data yourdata;Input Block$Treat$Y;Cards;数据;Proc GLM data=yourdata;Class Block Treat;M

3、odel Y=Block Treat;Means Treat/duncan;Run;,3.2 平衡不完全区组设计(BIB设计),在随机区组和拉丁方等设计中,任一个区组中都包含着所有的试验处理,这种区组称为完全区组。,在科学试验中,由于受到试验条件的限制,有时一个区组中无法容纳全部的试验处理,而只能容纳其中一部分,这种区组称为不完全区组。这样的区组设计称为不完全区组设计。,不完全区组设计种类很多,其中应用非常广泛的设计之一是平衡不完全区组设计(Balanced Incomplete Block Design),简称BIB设计。,平衡不完全区组设计(BIB设计),平衡不完全区组设计(BIB设计),

4、BIB设计的一般定义,BIB设计的统计模型,BIB设计的方差分析,BIB设计统计分析方差分析,Data yourdata;Input Block Treat Y;Cards;数据;Proc GLM data=yourdata;Class Block Treat;Model Y=Block Treat/SS1;LSMeans Treat/pdiff;Run;,3.3 格子设计(Lattice Design),在农业试验设计中,经常会碰到由于试验处理较多,或者受试验条件的限制,而在一个重复中容纳不了较多试验处理的情况。这时可以采用格子试验设计。比如,在作物育种试验中,处理数非常多,可以达到几十个,

5、乃至几百个品系、杂交子代或无性系。若采用区组设计,过多的处理数会导致区组过大,区组控制失败,带来很大的试验误差。需采用一种试验设计方法格子设计。,格子设计,格子设计最早是由F.Yates于1936年提出,用于植物育种中品系较多时的测试试验,现广泛用于各项育种试验中。其基本原理是应用较小的区组,容易控制区组内的同质性来提高试验精确度。格子设计是不完全区组设计的一种,可分为平衡格子设计和不平衡格子设计。,格子设计,平衡格子设计和不平衡格子设计的主要区别在于:1.平衡格子设计的重复数比较严格,不平衡格子设计的重复数可根据实际情况少量选取。2.比较处理间的差异时,平衡格子设计的精确度比不平衡格子设计的

6、高。,3.3.1 平衡格子设计,平衡格子设计的参数:t 处理数 k 不完全区组包含的小区数 r 重复次数 b 区组数 满足的条件:t=k2 r=k+1 b=k*r=k(k+1),平衡格子设计,平衡格子设计的常用参数:,注:处理数为36时无法安排平衡格子设计,处理数必为整数的平方,若不满足时,可以采用增加对照或有希望的处理,或减少无希望处理,从而接近的某个平方数。,平衡格子设计步骤,例:一个试验包含9个处理,平衡格子设计要求,每个不完全区组内应包含3个处理,4次重复,12个不完全区组。,步骤1:划分试验区域为4个重复,每个重复包含9个试验小区,来安排9个处理。,平衡格子设计步骤,划分区组时,应遵

7、循区组内同质,区组间和重复间允许存在差异的原则。,步骤2:根据试验的处理数从设计表中挑选一个基础方案。即33的平衡格子。,平衡格子设计步骤,步骤3:对重复随机排列,步骤4:各重复内区组随机排列,平衡格子设计步骤,步骤5:各区组内处理随机排列,步骤6:绘出田间种植图,安排田间试验,平衡格子设计的特点,特点1:区组较小,局部控制效果好,精度较高。,特点2:对处理数的要求太严格。,特点3:处理数太多时的要求重复数也很多。处理数很多时,可以根据其特征分成几个较小的格子设计,可较少重复数。,特点4:统计分析比较复杂。,3.3.2 不平衡格子设计,不平衡格子设计的重复数没有严格的要求,可采用较少的重复数。

8、可以分为:1.简单格子设计:取平衡格子设计的前两个重复,可以加倍成四次、六次重复。2.三重格子设计:取平衡格子设计的前三个重复,可以加倍成六次、九次重复。3.四重格子设计:可以在三重格子设计基础上在增加对角线一组构成。,重复数确定后,重复区组和处理的随机化和平衡格子设计一样。,3.3.3 矩形格子设计,当每个区组内的小区数为k,每一重复内设置b=k+1个区组处理数为t=k(k+1)时,所形成的格子设计叫做矩形格子设计。矩形格子设计也是不平衡格子设计的一种。矩形格子设计的供试处理数k(k+1)个,如:12,20,30,42,56,72,90,110,132等。由于其处理数在k2和(k+1)2之间

9、,因而可以作为平衡格子设计的一种补充。重复数为3或3的倍数,如:3,6,9等。,3.3.3 矩形格子设计,矩形格子设计的参数:t 处理数 k 不完全区组包含的小区数 r 重复次数 b 重复内区组数 每一个重复内:t=k(k+1)b=k*r=k(k+1)r=3,矩形格子设计的方法,矩形格子设计可以由多种方法构造,比较常用的方法是从一个主对角线上无相同字母的(k+1)阶拉丁方导出。,例如:对于45=20的矩形格子设计可以由主对角线上无相同字母的5阶拉丁方导出。,矩形格子设计的方法,划去其主对角线上的字母,依次填入号码120。,把同一行的编号分为一组,称为X重复。,矩形格子设计的方法,把同一列的编号

10、分为一组,称为Y重复。,矩形格子设计的方法,再把英文字母相同的编号分为一组,称为Z重复。,矩形格子设计的方法,此矩形格子设计,共有X,Y,Z三个重复。安排试验时,重复内区组随机排列,区组内处理随机排列。,3.3.4 格子设计统计分析,各种格子设计的试验结果都只有四种变异来源重复间变异、重复内区组间变异、处理间变异和误差变异。但是,其区组变异中混杂着处理效应因,不同区组的处理不相同;而处理变异中也混杂着区组效应因,不同处理可能在不同的区组。因此,在方差分析计算区组变异时需消去处理效应,以获得试验误差的无偏估计,而在多重比较时则需矫正各处理的产量,以消去区组效应。上述原则适用于所有格子设计,不同格子设计在分析上的差别仅是消去处理和区组效应的具体方法有所不同。,3.3.4 格子设计统计分析,格子设计方差分析,Data yourdata;Input Group Block Treatmnt Y;Cards;数据;Proc lattice data=yourdata;Var Y;Run;,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号