《【教学课件】第8章流量测量技术.ppt》由会员分享,可在线阅读,更多相关《【教学课件】第8章流量测量技术.ppt(111页珍藏版)》请在三一办公上搜索。
1、第8章 流量测量技术,8.1 流量测量的基础知识,8.2 流量测量仪表,8.3 流量标准装置,流量测量技术和仪表的应用领域,工业生产过程,能源计量,一次能源(煤炭、原油、瓦斯气、石油气、天然气),二次能源(电力、焦炭、煤气、成品油、液化石油气、蒸汽)及含能工质(压缩空气、氧、氮、氢、水)等,生物技术,交通运输,环保工程,空气污染(烟废气排放)、水污染,管道输送,8.1 流量测量的基础知识,流量和流量计,8.1.2 流体的物理性质与管流基础知识,8.1.3 流量测量方法与流量仪表的分类,V-体积;M-质量;t-时间;A-截面面积;-流体密度,流量的概念和单位流体的流量是指在短暂时间内流过某一流通
2、截面的流体数量与通过时间之比,该时间足够短以致可认为在此期间的流动是稳定的。此流量又称瞬时流量。流体数量以体积表示称为体积流量,流体数量以质量表示称为质量流量。,单位:m3/s,单位:Kg/s,平均流速:,流体在流过截面上各点的流速。,体积流量和质量流量关系:,累计流量在某段时间内流体通过的体积或质量总量称为累积流量或流过总量,它是体积流量或质量流量在该段时间中的积分,表示为:,单位:m3,单位:Kg,8.1.2 流体的物理性质与管流基础知识1.流体的密度2.流体粘度3.流体的压缩系数和膨胀系数,4.雷诺数雷诺数是流体流动的惯性力与粘滞力之比,雷诺数小,意味着流体流动时各质点间的粘性力占主要地
3、位,流体各质点平行于管路内壁有规则地流动,呈层流流动状态。雷诺数大,意味着惯性力占主要地位,流体呈紊流流动状态,一般管道雷诺数Re2000为层流状态,Re4000为紊流状态,Re20004000为过渡状态。在不同的流动状态下,流体的运动规律流速的分布等都是不同的,因而管道内流体的平均流速与最大流速max的比值也是不同的。因此雷诺数的大小决定了粘性流体的流动特性。,研究具有圆形截面的管内流动情况,当管内流体为层流状态时,沿半径方向上的流速分布可用下式表示:,距管中心距离,处的流速;,管中心处最大流速;,距管中心径向距离;,管内半径。,当管内流体为紊流状态时,沿半径方向上的流速分布为:,n随流体雷
4、诺数不同而变化的系数,圆管内的流速分布,通过测流速求流量的流量计一般是检测出平均流速然后求得流量。对于层流,平均流速是管中心最大流速的0.5倍();紊流时的平均流速与值有关:,表8-1 雷诺数与 n的关系,7.流体流动的连续性方程和伯努利方程(1)连续性方程,任取一管段,设截面、截面处的面积、流体密度和截面上流体的平均流速分别为A1、和A2、。,=,(2)伯努利方程,当理想流体在重力作用下在管内定常流动时,对于管道中任意两个截面和有如下关系式(伯努利方程):,:重力加速度;:截面和相对基准线的高度;:截面和上流体的静压力;:截面和上流体的平均流速。,实际流体具有粘性,在流动过程中要克服流体与管
5、壁以及流体内部的相互摩擦阻力而作功,这将使流体的一部分机械能转化为热能而耗散。因此,实际流体的伯努利方程可写为:,截面和之间单位质量实际流体流动 产生的能量损失。,8.1.3 流量测量方法与流量仪表的分类1.流量测量方法,流量测量方法大致可以归纳为以下几类:(1)利用伯努利方程原理,通过测量流体差压信号来反映流量的差压式流量测量法;(2)通过直接测量流体流速来得出流量的速度式流量测量法;(3)利用标准小容积来连续测量流量的容积式测量;(4)以测量流体质量流量为目的的质量流量测量法。,2。流量计的分类体积流量计差压式流量计利用伯努利方程原理,通过测量流体差压信号容积式流量计利用标准小容积来连续测
6、量流量速度式流量计直接测量流体流速来得出流量质量流量计推导式质量流量计直接式质量流量计,3.流量仪表的主要技术参数,特性1:流量范围及量程比流量计的流量范围指可测最大流量和最小流量所限定的范围。在这个范围内,仪表在正常使用条件下示值误差不超过最大允许误差。最大流量与最小流量的比值称为量程比,一般表达为某数与 1 之比,流量计量程比的大小受仪表的原理与结构所限制。,特性2:测量精确度和误差 流量计的精确度用误差表示。流量计在出厂时均要进行标定,仪表所标出的精确度为基本误差。在现场使用中由于偏离标定条件会带来附加误差.流量计的实际测量精确度为基本误差与附加误差的合成,这种合成的估算很复杂,可以参照
7、有关规定计算。流量仪表的精度等级是根据允许误差的大小来划分的,其精度等级有:0.02、0.05、0.1、0.2、0.5、1.0、1.5、2.5等。,特性3:压力损失 安装在流通管道中的流量计实际上是一个阻力件,流体在通过流量计时将产生压力损失,这会带来一定的能源消耗。各种流量计的压力损失大小是仪表选型的一个重要指标。压力损失小,流体能消耗小,输运流体的动力要求小,测量成本低。反之则能耗大,经济效益相应降低。故希望流量计的压力损失愈小愈好,8.2 流量测量仪表,8.2.1 差压式流量计,8.2.2 容积式流量计,8.2.4 质量流量计,8.2.3 速度式流量计,8.2.1 差压式流量计,测量对象
8、:流体方面,单相、混相、洁净、脏污;工作状态:常压、高压、真空、常温、高温、低温;管径方面:从几毫米到几米;流动条件:亚音速流、临界流、脉动流,历史悠久、技术成熟、应用最广泛。,节流式特点:结构简单、使用寿命长,适应能力强,几乎能测量各种工况下的流量。,差压式流量计基于在流通管道上设置流动阻力件,流体通过阻力件时将产生压力差,此压力差与流体流量之间有确定的数值关系,通过测量差压值可以求得流体流量。最常用的差压式流量计是由产生差压的装置和差压计组合而成。产生差压的装置有多种型式,包括节流装置:如孔板、喷嘴、文丘利管等,以及动压管、均速管、弯管等。其他型式的差压式流量计还有靶式流量计、浮子流量计等
9、。,孔板,引压管,差压计,节流式流量计 优点:结构简单,无可动部件;可靠性较高;复现性能好;适应性较广,它适用于各种工况下的单相流体,适用的管道直径范围宽,可以配用通用差压计;装置已标准化。缺点:安装要求严格;流量计前后要求较长直管段;测量范围窄,一般范围度为 3:1;压力损失较大;对于较小直径的管道测量比较困难;精确度不够高(1%2%)。,1-节流元件 2-引压管路3-三阀组 4-差压计,流体流经节流件时压力和流速变化图,=,测量原理及流量方程,截面1和2上流体的静压力;,截面1和2上流束直径;,截面1和2上流体的平均流速;,、,截面1和2上流体的密度,、,体积流量:,质量流量:,以实际采用
10、的某种取压方式所得到的压差,来代替,的值;同时引入流出系数C,对上式进行修正:,对于可压缩流体,考虑到节流过程中流体密度的变化而引入流束膨胀系数 进行修正采用节流件前的流体密度,由此流量公式可更一般的表示为:,结论:流量与压力差的平方根成正比,流体必须是牛顿流体,在物理学和热力学上是均匀的、单相的,或者可认为是单相的流体。,b.流体必须充满管道和节流装置且连续流动,流经节流件前流动应达到充分紊流,流束平行于管道轴线且无旋转,流经节流件时不发生相变。,c.流动是稳定的或随时间缓变的。,(2)节流装置 标准节流装置的适用条件,标准节流元件的结构形式,a.标准孔板,标准孔板是一块具有与管道同心圆形开
11、孔的圆板,迎流一侧是有锐利直角入口边缘的圆筒形孔,顺流的出口呈扩散的锥形。,结构简单,加工方便,价格便宜,压力损失较大,测量精度较低,只适用于洁净流体介质,测量大管径高温高压介质时,孔板易变形。,标准孔板,b.标准喷嘴,标准喷嘴是一种以管道轴线为中心线的旋转对称体,主要由入口圆弧收缩部分与出口圆筒形喉部组成,有ISAl932喷嘴和长径喷嘴两种型式。,ISA1932喷嘴,长径喷嘴,c.文丘里管 文丘里管有两种标准型式:经典文丘里管与文丘里喷嘴。文丘里管压力损失最低,有较高的测量精度,对流体中的悬浮物不敏感,可用于污脏流体介质的流量测量,在大管径流量测量方面应用的较多。但尺寸大、笨重,加工困难,成
12、本高,一般用在有特殊要求的场合。,节流装置的取压方式 根据节流装置取压口位置可将取压方式分为理论取压、角接取压、法兰取压、径距取压与损失取压五种:,节流装置的取压方式,法兰取压装置,目前广泛采用的是角接取压法,其次是法兰取压法。角接取压法比较简便,容易实现环室取压,测量精度较高。法兰取压法结构较简单,容易装配,计算也方便,但精度较角接取压法低些。,角接取压装置,测量管道条件 测量管道截面应为圆形,节流件及取压装置安装在两圆形直管之间。节流件附近管道的圆度应符合标准中的具体规定。,当现场难以满足直管段的最小长度要求或有扰动源存在时,可考虑在节流件前安装流动整流器,以消除流动的不对称分布和旋转流等
13、情况。安装位置和使用的整流器型式在标准中有具体规定。,非标准节流装置,a.1/4圆喷嘴,b.锥形入口孔板,c.圆缺孔板,标准节流装置的计算,流量计算 这类计算命题是在管道、节流装置、取压方式、被测流体参数已知的情况下,根据测得的差压值计算被测介质流量。属校核计算,常用在使用现场,所依据的基本公式是流量公式。设计节流装置 这类计算命题是要根据用户提出的已知条件以及限制要求来设计标准节流装置,属设计计算。,差压计 差压计与节流装置配套组成节流式流量计。差压计经导压管与节流装置连接,接受被测流体流过节流装置时所产生的差压信号,并根据生产的要求,以不同信号形式把差压信号传递给显示仪表,从而实现对流量参
14、数的显示、记录和自动控制。差压计的种类很多,凡可测量差压的仪表均可作为节流式流量计中的差压计使用。目前工业生产中大多数采用差压变送器。它们可将测得的差压信号转换为0.02-0.1 MPa的气压信号和4-20mA的直流电流信号。,2.皮托管和均速管流量计皮托管 皮托管是一根弯成直角的双层空心复合管,带有多个取压孔,能同时测量流体总压和静压。,皮托管结构,皮托管头部迎流方向开有一个小孔A,在距头部一定距离处开有若干垂直于流体流向的静压孔B,各孔所测静压在均压室均压后输出。,皮托管的工作原理可分析如下:L型皮托管,皮托管测量原理,设流动为不可压缩无粘性流体的稳定流动,驻点处流体的伯努利方程为:,由此
15、可以得该点的流速为:,考虑到实际测量情况与理论上的差别,引入皮托管系数(数值由实验确定)对上式进行修正:,对于可压缩流体,考虑到压缩性的影响,实际流速计算公式为:,(1-,)为流体可压缩性修正系数,对不可压缩流体,=0。,皮托管主要应用于HVAC,洁净空间和空气处理领域。可以测量温度较高的气体和有颗粒的气体,还可测量较高风速。静压可达6bar温度最高可到650800精度:0.5%(指排列顺序)测量风速和风量时能保证2%精度),均速管流量计,均速管测量流速的原理与皮托管相同,体积流量可由下式确定:,3.转子流量计,转子流量计也是利用节流原理测量流体的流量,但它的差压值基本保持不变,是通过节流面积
16、的变化反映流量的大小,故又称恒压降变截面流量计,也有称作浮子流量计。转子流量计可以测量多种介质的流量,更适用于中小管径、中小流量和较低雷诺数的流量测量。,测量原理,根据流体连续性方程和伯努利方程,转子流量计的体积流量可表示为:,流量系数;,转子与锥形管间的环形流通面积;,流体密度;,差压。,转子流量计结构,玻璃管转子流量计主要由玻璃锥形管、转子和支撑结构组成。流量示值刻在锥形管上。,金属管转子流量计金属管转子流量计的锥形管采用金属材料制成,其流量检测原理与玻璃管转子流量计相同。金属管转子流量计有就地指示型和电气信号远传型两种。,电远传式转子流量计工作原理,转子流量计的刻度换算 转子流量计是一种
17、非通用性仪表,出厂时其刻度需单独标定。仪表厂在工业标准状态下,以空气标定测量气体流量的仪表;以水标定测量液体流量的仪表。若被测介质不是水或空气,则流量计的指示值与实际流量值之间存在差别,必须对流量指示值按照实际被测介质的密度、温度、压力等参数的具体情况进行刻度修正。,液体介质:,气体介质,已知:s=1 kg/L,y=0.831 kg/L,z=7.92 kg/L,QN=28 m3/h,代入修正公式式可得:,用一个用水标定的转子流量计来测量苯的流量,流量计的读数为28 m3/h,已知转子密度为7920 kg/m3的不锈钢,苯的密度为0.831 kg/L,求苯的实际流量是多少?,例,解,所以苯的实际
18、流量是31.08m3/h。,4.靶式流量计,靶式流量计是一种适用于测量高粘度、低雷诺数流体流量的流量测量仪表,例如用于测量重油、沥青、含固体颗粒的浆液及腐蚀性介质的流量。,流体流速;密度;靶的受力面积。,流体对靶的作用力,5.弯管流量计 弯管流量计是一种可用于任何工艺管道流量测量的装置。设弯管直径为D,弯管中心线半径为 R,流体密度,根据弯管流速面积分布定律和流体能量守恒定律可推导出体积流量 与流体差压 的理论关系式:,考虑到流体粘性、管道形状及实际使用条件的影响,将上式乘上由实验求得的流量系数,并令则可得弯管流量计的实用流量公式:,弯管流量计,弯管流量传感器安装无附加压力损失,是一种节能产品
19、。可安装在工业管道的自然转弯处或直管段处,没有任何附加插入件或节流件,因为在测量过程中不会对被测流体造成附加阻力损失,可节省流体输送的动力消耗,降低运行费用。直管段要求低(前5D后2D适用性强,量程比大。具有结构简单,价格低廉、安装方便、耐磨损、免维护等特点。测量精度再现性好,使用寿命与管道同等。,TN-700弯管流量传感器介绍:,8.2.2 容积式流量计,容积式流量计是直接根据排出体积进行流量累计的仪表,它利用运动元件的往复次数或转速与流体的连续排出量成比例对被测流体进行连续的检测。容积式流量计可以计量各种液体和气体的累积流量,由于这种流量计可以精密测量体积量,所以其类型包括从小型的家用煤气
20、表到大容积的石油和天然气计量仪表,广泛地用作管理和贸易的手段。,测量原理,单位时间内所排出固定容积的数目作为测量依据,测量原理,设:V0计量室的容积 n转子的旋转次数,则,排出的流体总量,椭圆齿轮流量计,两个椭圆齿轮 A、B 在进出口流体压力差的作用下,交替地相互驱动,并各自绕轴作非匀角速度的转动。在转动过程中连续不断地将充满在齿轮与壳体之间的固定容积内的流体一份份地排出。齿轮的转数可以通过机械的或其他的方式测出,从而可以得知流体总流量。两个齿轮每转动一圈,流量计将排出 4 个半月形容积的流体。通过椭圆齿轮流量计的流体总量可表示为:Q=4nV0,2.腰轮流量计 腰轮流量计又称罗茨流量计,其工作
21、原理与椭圆齿轮流量计相同。腰轮流量计的转子是一对不带齿的腰形轮,在转动过程依靠套在壳体外的与腰轮同轴上的啮合齿轮来完成驱动。,腰轮流量计,腰轮流量计,腰轮流量计是一种容积式流量测量仪表,用以测量封闭管中流体的体积流量。就地显示累积流量,并有远传输出接口,与相应的光电式电脉冲转换器和流量积算仪配套,可进行远程测量,显示和控制。精度高,重复性好,范围度大,对流量计前后直管段要求不高。适用较高粘度流体,流体粘度变化对示值影响较小。适用无腐蚀性能的流体,如原油,石油制品(柴油,润滑油等)。,腰轮流量计,3.刮板式流量计 转子在流量计进、出口差压作用下转动,每当相邻两刮板进入计量区时均伸出至壳体内壁且只
22、随转子旋转而不滑动,形成具有固定容积的测量室,当离开计量区时,刮板缩入槽内,流体从出口排出,同时后一刮板又与其另一相邻刮板形成测量室。转子旋转一周,排出4份固定体积的流体,由转子的转数就可以求得被测流体的流量。,凸轮式刮板流量计,4.伺服式容积流量计 在流量计工作时,腰轮由伺服电机通过传动齿轮带动,伺服电机转动的快慢,随流体入出口压力差的大小而改变。导压管将入出口压力引至差压变送器以测量入出口压差的变化,当入出口压差大于零时,差压变送器输出信号经放大后驱动伺服电机带动腰轮加快旋转,使流量计排出较大流量的流体,从而使压差趋近于零。这种近于无压差的流量计,使泄漏量减小到最低限度,因而可以实现小流量
23、的高精度测量,而且测量误差几乎不受流体压力、粘度和密度的影响。,伺服式腰轮流量计工作原理,8.2.3 速度式流量计,速度式流量计的测量原理均基于与流体流速有关的各种物理现象,仪表的输出与流速有确定的关系,即可知流体的体积流量。典型的速度式流量计:涡轮流量计涡街流量计电磁流量计超声流量计,涡轮流量计可以测量气体、液体流量,但要求被测介质洁净,并且不适用于粘度大的液体测量。它的测量精度较高,一般为 0.5 级,在小范围内误差可以0.1%;由于仪表刻度为线性,范围度可达(1020):1;输出频率信号便于远传及与计算机相连;仪表有校宽的工作温度范围(-200400),可耐较高工作压力(10MPa)。,
24、(1)工作原理与结构 在一定范围内,涡轮的转速与流体的平均流速成正比,通过磁电转换装置将涡轮转速变成电脉冲信号,以推导出被测流体的瞬时流量和累积流量。,涡轮叶片速度分解,u 流体平均流速;,叶片的切向速度;,n 涡轮转速。,与流量的关系曲线,(2)流量方程,(3)涡轮流量计的特点和使用优点:其测量精度高,复现性和稳定性均好;量程范围宽,量程比可达(1020):1,刻度线性;耐高压,压力损失;对流量变化反应迅速,可测脉动流量;抗干扰能力强,信号便于远传及与计算机相连。缺点:制造困难,成本高。场合:通常涡轮流量计主要用于量精度要求高、流量变化快的场合,还用作标定其他流量的标准仪表。,2.涡街流量计
25、,属旋涡流量计类型,它是利用流体振荡的原理进行流量测量。在均匀流动的流体中,垂直地插入一个具有非流线型截面的柱体,称为漩涡发生体,则在其两侧会产生旋转方向相反、交替出现的漩涡,当每两个旋涡之间的纵向距离 h 和涡列间横向距离 L 满足一定的关系,即 h/L=0.281 时,这两个旋涡列将是稳定的,称之为“卡门涡街”漩涡体产生频率与流速的关系:,d漩涡发生体的特征尺寸,漩涡产生的频率;u流体流速;d直径,漩涡发生体的特征尺寸;St斯特罗哈尔数;D 管道内径;A 在漩涡发生体处的流通截面积。,夹装式公称通径25、40、50、80、100、150、200、250、300mm 量程比101101 精
26、度1.0 重复性0.2 最高使用压力4.0MPa 流体温度-40+300 适用流体液体、气体、蒸汽(饱和、过热)抗震性1.0g 公称通径3502000mm,可采用插入式涡街流量变送器。VA-X(D)智能型涡街流量计 VA-X型外接+24VDC电源 VA-X(D)型内置电池供电,连续工作时间1年;六位LCD显示,清晰,直观。VA-Q潜水型涡街流量变送器 用于潮湿环境或仪表可能被水浸泡的环境,信号引线从水管中引到地面。,详细介绍:,(2)漩涡频率的测量图图为三角柱体涡街检测器原理示意图,在三角柱体的迎流面对称地嵌入两个热敏电阻组成桥路的两臂,以恒定电流加热使其温度稍高于流体,在交替产生的漩涡的作用
27、下,两个电阻被周期地冷却,使其阻值改变,阻值的变化由桥路测出,即可测得漩涡产生频率,从而测出流量。,(3)涡街流量计的特点优点:涡街流量计测量精度较高;量程比宽,可达30:1;使用寿命长,压力损失小,安装与维护比较方便;测量几乎不受流体参数变化的影响,用水或空气标定后的流量计无须校正即可用于其它介质的测量;易与数字仪表或计算机接口,对气体、液体和蒸汽介质均适用。缺点:流体流速分布情况和脉动情况将影响测量准确度,因此适用于紊流流速分布变化小的情况,并要求流量计前后有足够长的直管段。,3.电磁流量计,对于具有导电性的液体介质,可以用电磁流量计测量流量。电磁流量计基于电磁感应原理,导电流体在磁场中垂
28、直于磁力线方向流过,在流通管道两侧的电极上将产生感应电势,感应电势的大小与流体速度有关,通过测量此电势可求得流体流量。,(1)测量原理和结构 流体流量方程为:,B为磁感应强度;D管道内径;u流体平均流速;E感应电势。,电磁流量计原理图,MKULC2100系列电磁流量计,测量介质:导电介质流速范围:0.310m/s测量精度:0.5%FS1.0%FS显示方式:LCD显示瞬时流量,累积流量。介质温度:070;090;0150(可选)压力:1.6Mpa;2.5Mpa;6.4Mpa;16Mpa;25Mpa;32Mpa输出信号:频率输出02kHz;电压输出15V电流输出4-20mA;RS-485串行接口断
29、电数据保存时间:10年电源:220VAC15%24VDC5%(可选)平均无故障工作时间:MTBF=30000h防护等级:IP67、IP68(只适用于分体型)衬里材料:聚氨脂橡胶、氯丁橡胶、聚四氟乙烯、F46。电极材料:316L,哈氏合金HB;哈氏合金HC;特殊材料(如:钛、钽、铂等稀有金属材料)。,MKULC2100系列电磁流量计性能特点:,电磁流量计的结构如图所示:,(2)电磁流量计的特点及应用优点:压力损失小,适用于含有颗粒、悬浮物等流体的流量测量;可以用来测量腐蚀性介质的流量;流量测量范围大;流量计的管径小到1mm,大到2m以上;测量精度为级;电磁流量计的输出与流量呈线性关系;反应迅速,
30、可以测量脉动流量。缺点:被测介质必须是导电的液体,不能用于气体、蒸汽及石油制品的流量测量;流速测量下限有一定限度;工作压力受到限制。结构也比较复杂,成本较高。,4.超声波流量计 超声波测流量的作用原理有传播速度法、多普勒法、波束偏移法、噪声法、相关法、流速液面法等多种方法。(1)传播速度法测量原理,超声测速原理,时差法时差法就是测量超声波脉冲顺流和逆流时传播的时间差。流体流速,t1-按顺流方向,超声波到达接收器时间;t2-按逆流方向,超声波到达接收器时间。,相差法相位差法是把上述时间差转换为超声波传播的相位差来测量。超声波换能器向流体连续发射形式为的 超声波脉冲,式中 为超声波的角频率。,按顺
31、流方向发射时收到的信号相位;,按逆流方向发射时收到的信号相位。,频差法 频差法是通过测量顺流和逆流时超声脉冲的循环频率之差来测量流量的。,顺流时脉冲循环频率:逆流时脉冲循环频率:脉冲循环频差:流体流速:,流体体积流量方程:,(2)多普勒法测量原理 根据多普勒效应,当声源和观察者之间有相对运动时,观察者所感受到的声频率将不同于声源所发出的频率。这个频率的变化与两者之间的相对速度成正比。超声波多普勒流量计就是基于多普勒效应测量流量的。,(3)超声波流量计的特点与应用 超声波流量计由超声波换能器、电子线路及流量显示系统组成。超声波换能器通常由锆钛酸铅陶瓷等压电材料制成,通过电致伸缩效应和压电效应,发
32、射和接收超声波。换能器在管道上的配置方式如图所示:,超声波换能器在管道上的配置方式,UFT型便携式超声波流量计,性能参数如下表所示:,8.2.4 质量流量计 流体的体积是流体温度、压力和密度的函数。质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。,1、间接式质量流量计一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。节流式流量计与密度计的组合,流式流量计与密度计组合,体积流量计与密度计的组合,体积流量计
33、和密度计组合,体积流量计与体积流量计的组合,节流式流量计和其它体积流量计组合,2.直接式质量流量计 直接式质量流量计的输出信号直接反映质量流量,有许多种型式。热式质量流量计,根据传热规律:,为流体的定压比热;,两点温度差。,热式质量流量计示意图,电源:24VDC精度:13%F.S.流通管径:20200工作温度:-2060输出:420mA、05VDC、232接口,差压式质量流量计 差压式质量流量计是以马格努斯效应为基础的流量计,实际应用中利用孔板和定量泵组合实现质量流量测量。有双孔板和四孔板与定量泵组合两种结构。,双孔板差压式质量流量计,四孔板差压式质量流量计:,四孔板差压式质量流量计,科里奥利
34、质量流量计 科里奥利质量流量计(简称科氏力流量计)是一种利用流体在振动管中流动而产生与质量流量成正比的科里奥利力的原理来测量质量流量的仪表。科氏力流量计结构有多种形式,一般由振动管与转换器组成。,科氏力流量计测量原理,为转动角速度,转弹性模量,传感器测量主体为一根U形管,U形管的两个开口端固定,流体由此流入和流出。在U形管顶端装有电磁装置,用于激发U形管,使其以O-O为轴,按固有的自振频率振动,振动方向垂直于U形管所在平面。U形管中的流体在沿管道流动的同时又随管道作垂直运动,此时流体将产生一科里奥利加速度,并以科里奥利力反作用于U形管。由于流体在U形管两侧的流动方向相反,所以作用于U形管两侧的
35、科氏力大小相等方向相反,从而形成一个作用力矩。U形管在此力矩作用下将发生扭曲,U形管的扭角与通过的流体质量流量相关。U形管两侧通过中心平面的时间差也与流体质量流量相关。,流量计结构示意图,科氏力质量流量计的特点,可直接测得质量流量信号,不受被测介质物理参数的影响,精度较高;可以测量多种液体和浆液,也可以用于多相流测量;不受管内流态影响,因此对流量计前后直管段要求不高;其范围度可达100:1。但是它的阻力损失较大,存在零点漂移,管路的振动会影响其测量精度。,8.3 流量标准装置 为了得到准确的流量值,除了正确使用和维护流量计外,还必须对流量计进行标定和定期校验,以保证计量的准确度。流量计的标定随
36、流体的不同有很大的差异,需要建立各种类型的流量标准装置。流量标准装置的建立是比较复杂的,不同的介质如水、气、油,以及不同的流量范围和管径大小均要有与之相应的装置。以下介绍几种典型的流量标准装置。,8.3.1 液体流量标准装置,8.3.2 气体流量标准装置,8.3.1 液体流量标准装置1.标准容积法 容积法液体流量标准装置由水源、流量稳压装置、试验管道、切换机构和标准计量容器等几个部分组成。其中流量稳压装置有高位水槽和气液容器稳压法两种。标准计量容器是经过精确标定的,其容积精度可达万分之几,其上装有读数装置,有各种不同的容积可根据流量范围需要选用.,1水池;2水泵;3高位水槽;4溢流管;5稳压容
37、器;6夹表器;7切换机构;8切换挡板;9标准容积计量槽;10液位标尺;11游标;12被校流量计,标准容积法流量标准装置,2.标准质量法 这种方式是以秤代替标准容器作为标准器,用秤量一定时间内流入容器内的流体总量的方法来求出被测液体的流量。秤的精度较高,这种方法可以达到0.1的精度3.标准流量计法 这种方式是采用高精度流量计作为标准仪表对其他工作用流量计进行校正。用作高精度流量计的有容积式、涡轮式、电磁式和差压式等型式,可以达到0.1左右的测量精确度。,4.标准体积管 图为单球式标准体积管的原理示意图。合成橡胶球经交换器进入体积管,在流过被校验仪表的液流推动下,按箭头所示方向前进。橡胶球经过入口
38、探头时发出信号启动计数器,橡胶球经过出口探头时停止计数器工作。橡胶球受导向杆阻挡,落入交换器,再为下一次实验作准备。被校表的体积流量总量与标准体积段的容积相等,脉冲计数器的累计数相应于被校表给出的体积流量总量。这样,根据检测球走完标准体积段的时间求出的体积流量作为标准,把它与被校表显示值进行对比,即可得知被校表的精度。,1被校验流量计;2交换器;3球;4终止检测器;5起始检测器;6体积管;7校验容积;8计数器,单球式标准体积管原理示意图,8.3.2 气体流量标准装置 对于气体流量计,常用的校正方法有:用标准气体流量计的校正法,用标准气体容积的校正法,使用液体标准流量计的置换法等。标准气体容积校正的方法采用钟罩式气体流量校正装置,其系统示意图如图所示。,1钟罩;2导轨和支架;3平衡锤;4补偿锤;5、6挡板;7发讯器,钟罩式气体流量校正装置,