【教学课件】第四节理化因素对微生物的影响.ppt

上传人:小飞机 文档编号:5665468 上传时间:2023-08-07 格式:PPT 页数:86 大小:340KB
返回 下载 相关 举报
【教学课件】第四节理化因素对微生物的影响.ppt_第1页
第1页 / 共86页
【教学课件】第四节理化因素对微生物的影响.ppt_第2页
第2页 / 共86页
【教学课件】第四节理化因素对微生物的影响.ppt_第3页
第3页 / 共86页
【教学课件】第四节理化因素对微生物的影响.ppt_第4页
第4页 / 共86页
【教学课件】第四节理化因素对微生物的影响.ppt_第5页
第5页 / 共86页
点击查看更多>>
资源描述

《【教学课件】第四节理化因素对微生物的影响.ppt》由会员分享,可在线阅读,更多相关《【教学课件】第四节理化因素对微生物的影响.ppt(86页珍藏版)》请在三一办公上搜索。

1、第四节 理化因素对微生物的影响,微生物与所处的环境之间具有复杂的相互影响和相互作用:一方面,各种各样的环境因素对微生物的生长和繁殖有影响,另一方面,微生物生长繁殖也会影响和改变环境。研究环境因素与微生物之间的关系,可以通过控制环境条件来利用微生物有益的一面,同时防止它有害的一面。影响微生物生长的外界因素很多,除了前面讲过的营养因素之外,还有许多物理化学条件。,一、温度温度是影响微生物生长的最重要因素之一。温度对微生物的影响具体表现在:影响酶活性,温度变化影响酶促反应速率,最终影响细胞合成。影响细胞膜的流动性,温度高,流动性大,有利于物质的运输,温度低,流动性降低,不利于物质运输,因此,温度变化

2、影响营养物质的吸收与代谢产物的分泌。影响物质的溶解度,对生长有影响。,(一)微生物生长的三个温度基点,从微生物整体来看:生长的温度范围一般在-10 100 极端下限为-30,极端上限为105300 但对于特定的某一种微生物:只能在一定温度范围内生长,在这个范围内,每种微生物都有自己的生长温度三基点,即最低、最适、最高生长温度。,处于最适生长温度时,生长速度最快,代时最短。超过最低生长温度时,微生物不生长,温度过低,甚至会死亡。超过最高生长温度时,微生物不生长,温度过高,甚至会死亡。,(二)微生物生长温度类型,根据微生物的最适生长温度的不同,可将微生物划为三个类型:,低温型微生物(嗜冷微生物)中

3、温型微生物(嗜温微生物)高温型微生物(嗜热微生物),低温型微生物:最适生长温度在520,主要分布在地球的两极、冷泉、深海、冷冻场所及冷藏食品中。例:假单孢菌中的某些嗜冷菌在低温下生长,常引起冷藏食品的腐败。嗜冷微生物在低温下生长的机理,目前还不清楚,据推测有两种原因:它们体内的酶能在低温下有效地催化,在高温下酶活丧失细胞膜中的不饱和脂肪酸含量高,低温下也能保持半流动状态,可以进行物质的传递。,中温型微生物:最适生长温度为2040,大多数微生物属于此类。室温型主要为腐生或植物寄生,在植物或土壤中。体温型主要为寄生,在人和动物体内。,高温型微生物:最适生长温度为50 60,主要分布在温泉、堆肥和土

4、壤中。在高温下能生长的原因:酶蛋以及核糖体有较强的抗热性核酸具有较高的热稳定性(核酸中G+C含量高(tRNA),可提供形成 氢键,增加热稳定性)。细胞膜中饱和脂肪酸含量高,较高温度下能维持正常的液晶状态。,高温微生物的特点:生长速度快,合成大分子迅速,可及时修复高温对其造成的分子损伤。耐高温菌具应用优势:在减少能源消耗、减少染菌、缩短发酵周期等方面具重要意义。有利于非气体物质在发酵液中的扩散和溶解,防止杂菌污染,由高温微生物产的酶制剂,酶反应温度和耐热性都比中温微生物高。,不同生理生化过程的最适温度,微生物不同生理活动要求不同温度,所以,最适生长温度 发酵速度快、积累代谢产物多。一般而言,老龄

5、比幼龄耐热,原核生物比真核生物耐热,非光合生物比光合生物耐热,结构简单的比结构复杂的耐热,在富含蛋白质的培养基上生长的细菌耐热能力强。,菌 名 生长温度 发酵温度 累积产物温度()()()Streptococcus thermophilus 37 47 37S.lactis 34 40 产细胞:2530 产乳酸:30Streptomyces griseus 37 28 _Corenybacterium pekinense 32 3335 _Clostridium acetobutylicum 37 33 _Penicilium chrysogenum 30 25 20以青霉素的生产为例:培养1

6、65小时采用分段控制温度的方法,其青霉素产量比始终在30 培养提高了14.7%。分段控制方式:05小时,30;540小时,25;40125小时,20;125165小时,25。,(三)高温与低温对微生物的影响,1、高温对微生物的影响高温下蛋白质不可逆变性,膜受热出现小孔,破坏细胞结构(溶菌)。微生物对热的耐受力与以下因素有关:(1)微生物种类及发育阶段 嗜热菌比其它类型的菌体抗热;有芽孢的细菌比无芽孢的菌抗热;微生物的繁殖结构比营养结构抗热性强;老龄菌比幼龄菌抗热。,(2)微生物对热的耐受力还受环境条件的影响 与培养基的营养成分有关:培养基中蛋白质含量高时比较耐热。与pH 有关:pH适宜时不易死

7、亡,pH不适宜时,容易死亡。与水分有关:含水量大时容易死亡,含水量小时不容易死亡。与含菌量有关:含菌量高,抗热性增强,含菌量低,抗热性差。与热处理时间有关:热处理时间长,微生物易死亡。,2、低温对微生物的影响,当环境温度低于微生物的最适生长温度时,微生物的生长繁殖停止,当微生物的原生质结构并未破坏时,不会很快造成死亡并能在较长时间内保持活力,当温度提高时,可以恢复正常的生命活动。低温保藏菌种就是利用这个原理。一些细菌、酵母菌和霉菌的琼脂斜面菌种通常可以长时间地保藏在4的冰箱中。当温度过低,造成微生物细胞冻结时,有的微生物会死亡,有些则并不死亡。,造成死亡的原因:冻结时细胞水分变成冰晶,冰晶对细

8、胞膜产生机械损伤,膜内物质外漏。冻结过程造成细胞脱水。冻结速度对冰晶形成有很大影响,缓慢冻结,形成的冰晶大,对细胞损伤大;快速冻结,形成的冰晶小、分布均匀,对细胞的损伤小,因此,利用快速冻结可以对一些菌种进行冻结保藏,一般情况下在菌悬液中再加一些甘油、糖、牛奶、保护剂等可对菌种进行长期保藏。,二、干燥 渗透压和干燥都涉及到水分含量和水活度,它们对微生物的生长都有很大的影响。干燥对微生物的影响 干燥抑制微生物生长或造成其死亡的原因:干燥能引起微生物细胞内蛋白质的变性和盐类等物质浓度提高,从而抑制生长或造成微生物死亡。,微生物对干燥的抵抗力与以下因素有关:温度:在相同的干燥环境下,温度高,微生物易

9、死亡,而在低温下不易死亡(例如冷冻干燥保藏菌种)干燥速度:干燥速度快,微生物不易死亡,反之,易死亡。基质:在不同基质中对干燥的抵抗力不同,含有糖、淀粉、蛋白质等物质时,不易死亡。微生物种类及生长时期:产荚膜菌比不产荚膜菌抗性强;小型、厚壁细胞的微生物比长型、薄壁细胞的微生物抗性强;细菌的芽孢、真菌的孢子比营养细胞抗干燥性很强;老龄菌比幼龄菌抗性强。,三、渗透压 水或其他溶剂经过半透性膜而进行的扩散称为渗透,在渗透时溶剂通过半透性膜时的压力称为渗透压,其大小与溶液的浓度成正比。,渗透压对微生物的影响 细胞内溶质浓度与胞外溶液的溶质浓度相等时,为等渗溶液,溶液的溶质浓度高于胞内溶质浓度为高渗溶液,

10、溶液的溶质浓度低于胞内溶质浓度为低渗溶液。在等渗溶液中,微生物的活动保持正常,细胞外形不变。在高渗溶液中,细胞易失水,脱水后发生质壁分离,生长受抑制或死亡。(盐渍和糖渍保藏食品)在低渗溶液中,细胞吸水膨胀,甚至导致细胞破裂死亡。,渗透压与溶质的种类及浓度有关:溶质浓度高,渗透压大;不同种类的溶质形成的渗透压大小不同,小分子溶液比大分子溶液渗透压大;离子溶液比分子溶液渗透压大;相同含量的盐、糖、蛋白质所形成的溶液渗透压为 盐糖蛋白质。对于一般微生物来说,在含盐5%30%或含糖30%80%的高渗条件下可抑制或杀死某些微生物。但各种微生物承受渗透压的能力不同,有些能在高渗条件下生长,称其为耐高渗微生

11、物。,细菌中的嗜盐菌:能在15%30%的盐溶液中生长,主要分布在盐湖、死海、海水和盐场及腌渍菜中。又分为:低嗜盐菌:能在2%5%盐溶液中生长 中嗜盐菌:5%20%极端嗜盐菌:20%30%,高糖环境下生长的微生物:花蜜酵母菌和某些霉菌能在60%80%的糖溶液中生长。产甘油的耐高渗酵母能在20%40%的糖蜜中生长。,四、表面张力 液体表面尽可能缩小表面积的力称为表面张力。液体培养基的表面张力与微生物的形态、生长、繁殖密切相关。一些无机盐可增强溶液的表面张力,有机酸、蛋白质、肥皂、多肽和醇等能降低溶液的表面张力。能改变液体表面张力的物质为表面活性剂,分为阳离子型、阴离子型和非离子型三类。表面活性剂加

12、入培养基中,可影响微生物细胞的生长和分裂。,阴离子表面活性剂有肥皂、十二烷基磺酸钠等。如肥皂的作用是机械除菌,微生物附着于泡沫中被水冲洗掉。非离子型表面活性剂为一些高分子化合物,如聚醛类表面活性剂,非离子型表面活性剂不电离,无抑菌活性。,阳离子型表面活性剂主要有季铵盐类化合物等,阳离子型表面活性剂有明显的抗菌活性。其作用机理:降低表面张力,便于机械除菌;抑制酶,使蛋白质变性;破坏细胞膜,造成渗漏。季铵盐类表面活性剂有杀菌和清洁作用,使用不受温度影响,气味低、无毒、无腐蚀性、穿透性好。,表面活性剂的应用:在发酵工业中表面活性剂作为消泡剂应用(现采用聚醚类代替植物油),防止发酵罐因泡沫多而跑液。表

13、面活性剂可以改变细胞膜的通透性,使细胞内合成的代谢产物能够顺利排出胞外。(降低了发酵产物在胞内的浓度,减小产物抑制;有利于提高发酵产物的产量和简化产物的分离提取。)表面活性剂常用于与微生物细胞膜结合的酶的提取。,五、氢离子浓度(一)环境pH值对微生物生长的影响 影响膜表面电荷的性质及膜的通透性,进而影响对物质的吸收能力。改变酶活、酶促反应的速率及代谢途径:如:酵母菌在pH4.5-5产乙醇,在 pH6.5以上产甘油、酸。环境pH值还影响培养基中营养物质的离子化程度,从而影响营养物质吸收,或有毒物质的毒性。,(二)不同微生物对pH要求不同 微生物的生长pH值范围极广,从pH8都有微生物能生长。但是

14、绝大多数种类都生活在pH5.09.0之间。微生物生长的pH值三基点:各种微生物都有其生长的最低、最适和最高pH值。低于最低、或超过最高生长pH值时,微生物生长受抑制或导致死亡。,不同的微生物最适生长的pH值不同,根据微生物生长的最适pH值,将微生物分为:嗜碱微生物:硝化细菌、尿素分解菌、多数放线菌 耐碱微生物:许多链霉菌 中性微生物:绝大多数细菌,一部分真菌 嗜酸微生物:硫杆菌属 耐酸微生物:乳酸杆菌、醋酸杆菌,一些微生物生长的pH值范围,不同微生物的生长pH值范围,微生物 pH值 最低 最适 最高Thiobacillus thiooxidans 氧化硫硫杆菌 0.5 2.03.5 6.0La

15、ctobacillus acidophilus 嗜酸乳杆菌 4.04.6 5.86.66.8Rhizobium japonicum 大豆根瘤菌 4.2 6.87.0 11.0Azotobacter chroococcum 圆褐固氮 4.5 7.47.6 9.0Nitrosomonas sp.硝化单胞菌 7.0 7.88.6 9.4Acetobacter aceti 醋化醋杆菌 4.04.5 5.46.3 7.08.0Staphylococcus aureus 金黄葡球菌 4.2 7.07.5 9.3Chlorobium limicola 泥生绿菌 6.0 6.8 7.0Thurmus aqua

16、ticus 水生栖热菌 6.0 7.57.8 9.5Aspergillus niger 黑曲霉 1.5 5.06.0 9.0一般放线菌 5.0 7.08.0 10.0般酵母菌 3.0 5、06.0 8.0,生长的最适pH值与发酵的最适pH值,同一种微生物在其不同的生长阶段和不同的生理生化过程中,对pH值的要求也不同。在发酵工业中,控制pH值尤其重要,举例:Aspergillus niger在pH22.5范围时有利于合成柠檬酸,当在pH2.56.5范围内时以菌体生长为主,而在pH7.0时,则以合成草酸为主。丙酮丁醇梭菌在pH5.57.0范围时,以菌体生长为主,而在pH4.35.3范围内才进行丙酮

17、丁醇发酵。,微生物 生长最适、pH合成抗生素最适pH灰色链霉菌6.36.96.77.3红霉素链霉菌6.67.06.87.3产黄青霉6.57.26.26.8金霉素链霉菌6.16.65.96.3龟裂链霉菌 6.06.65.86.1灰黄青霉6.47.06.26.5,同一种微生物在不同的生长阶段和不同生理生化过程中,对环境pH值要求不同。例如:丙酮丁醇梭菌H值=5.57.0时,以菌体生长为主。在pH值=4.35.3时,进行丙酮丁醇发酵。同一种微生物由于环境pH值不同,可能积累不同的代谢产物。例如:黑曲霉pH值=23时,产物以柠檬酸为主,只产少量草酸。pH值在7左右时,产物以草酸为主,只产少量柠檬酸。,

18、(三)微生物细胞内的pH值,虽然微生物生活的环境pH值范围较宽,但是其细胞内的pH值却相当稳定,一般都接近中性。这种维持细胞内稳定中性pH值的特性能够保持细胞内各种生物活性分子的结构稳定和细胞内酶所需要的最适pH值。微生物胞内酶的最适pH值一般为中性,胞外酶的最适pH值接近环境pH值。,(四)微生物的生命活动对环境pH值的影响 微生物在生长过程中也会使外界环境的pH值发生改变,原因:由于有机物分解:分解糖类、脂肪等,产生酸性物质,使培养液pH值下降;分解蛋白质、尿素等,产生碱性物质,使培养液pH值上升 由于无机盐选择性吸收:铵盐吸收 pH下降硝酸盐吸收 pH上加,培养过程中调节pH值的措施 过

19、酸时:加入碱或适量氮源,提高通气量。过碱时:加入酸或适量碳源,降低通气量配制培养基时调整pH值的措施。,(五)酸碱添加剂的抑菌机理,酸类物质:无机酸:与H+浓度成正比的高氢离子浓度,可引起菌体表面蛋白的变性和核酸的水解,并破坏酶类的活性有机酸:与不电离的部分成正比,故有时有机酸的抑菌效果无机酸。作为食品防腐剂的有机酸如苯甲酸和水杨酸可与微生物细胞中的成分发生氧化作用,从而抑制微生物的生长。,碱类物质:强碱可引起蛋白质、核酸大分子变性、水解,以杀死或抑制微生物。食品工业中常用石灰水、NaOH、Na2CO3等作为机器、工具以及冷藏库的消毒剂。,六、氧化还原电位,微生物对氧的需要和耐受力在不同的类群

20、中变化很大,根据微生物与氧的关系,可把它们分为几种类群:专性好氧菌:好氧菌 微好氧菌:兼性厌氧菌 耐氧厌氧菌:厌氧菌(专性)厌氧菌,氧浓度对不同微生物生长的影响,专性好氧菌,必须在有分子氧的条件下才能生长,有完整的呼吸链,以分子氧作为最终氢受体,细胞含有超氧物歧化酶和过氧化氢酶。,微好氧菌,只能较低的氧分压下才能正常生长,通过呼吸链并以氧为最终氢受体而产能。,兼性好氧菌,在有氧或无氧条件下均能生长,但有氧情况下生长得更好,在有氧时靠呼吸产能,无氧时接发酵或无氧呼吸产能;细胞含有SOD和过氧化氢酶。,耐氧菌,可在分子氧存在下进行厌氧生活的厌氧菌。生活不需要氧,分子氧也对它无毒害。不具有呼吸链,依

21、靠专性发酵获得能量。细胞内存在SOD和过氧化物酶,但缺乏过氧化氢酶。,厌氧菌,分子氧对它有毒害,短期接触空气,也会抑制其生长甚至致死;在空气或含有10%CO2的空气中,在固体培养基表面上不能生长,只有在其深层的无氧或低氧化还原电势的环境下才能生长;生命活动所需能量通过发酵、无氧呼吸、循环光合磷酸化或甲烷发酵提供;细胞内缺乏SOD和细胞色素氧化酶,大多数还缺乏过氧化氢酶。,厌氧菌的氧毒害机制 SOD学说:,严格厌氧微生物并不是被气态的氧所杀死,而是由于不能解除某些氧代谢产物的毒性而死亡。在氧还原为水的过程中,可形成某些有毒的中间产物,例如,过氧化氢(H2O2)、超氧阴离子(O2)等。超氧阴离子为

22、活性氧,兼有分子和离子的性质,反应力极强,极不稳定,可破坏膜和重要生物大分子,对微生物造成毒害或致死。,好氧微生物具有降解这些产物的酶,如过氧化氢酶、过氧化物酶、超氧化物歧化酶等,而严格厌氧菌缺乏SOD,故易被生物体内极易产生的超氧阴离子自由基毒害致死。,各类菌所含对氧解毒酶,专性好氧菌 SOD,过氧化氢酶 兼性厌氧菌 SOD,过氧化氢酶 专性厌氧菌 二种酶均无 微好氧菌 少量SOD 耐氧菌 SOD,过氧化物酶,在培养不同类型的微生物时,要采用相应的措施保证不同微生物的生长。培养好氧微生物:需震荡或通气,保证充足的氧气。培养专性厌氧微生物:需排除环境中的氧气,同时 在培养基中添加还原剂,降低

23、培养基中的氧化还原电位势。培养兼性厌氧或耐氧微生物:可深层静止培养。,第五节 灭菌和消毒 灭菌:采用强烈的理化因素,是任何物体内外部的一切微生物永远丧失其生长繁殖能力的措施,称为灭菌。消毒:采用较温和的理化因素,仅杀死物体表面或内部的一部分对人体有害的病原菌,而对被处理物体基本无害的措施,称为消毒。,防腐:利用理化因素完全抑制霉腐微生物的生长繁殖,从而达到防止物品发生霉腐的措施,称为防腐。化疗:即化学治疗。利用具有高度选择毒力的化学物质抑制宿主体内病院微生物的生长繁殖,以达到治疗该传染病的一种措施。,一、常用的灭菌、消毒、抑菌及除菌的物理方法,1、高温灭菌(消毒)法是最常用的物理方法。高温可引

24、起蛋白质、核酸等活性大分子氧化或变性失活而导致微生物死亡。,干热灭菌法焚烧法:是将被灭菌物品在火焰中燃烧,使所有的生物质碳化。简单、彻底,但对被灭菌物品的破坏极大。适用于无经济价值的物品灭菌,及不怕烧的实验器具,如接种环、镊子、试管或三角瓶口的灭菌等。,干燥热空气灭菌法 将物品放入烘箱内,然后升温至150170,维持12小时。适用于玻璃、陶瓷和金属物品的灭菌,不适合液体样品,及棉花、纸张、纤维和橡胶类物质的灭菌。特点:由于空气传热穿透力差,菌体在脱水状态下不易杀死,所以温度高、时间长。,湿热灭菌法:特点:温度低、时间短、灭菌效果高 原因:1)菌体内含水量越高,则凝固温度越低;2)蒸汽冷凝会放出

25、潜热;3)饱和水蒸汽穿透力强;4)湿热易破坏细胞内蛋白质大分子的稳定 性,主要破坏氢键结构。,高压蒸汽灭菌法利用水的沸点随水蒸气压力的增加而上升,以达到100 以上高温灭菌的方法。方法:121(1kg/cm2或15磅/英寸2)维持15-20min。112(0.5kg/cm2或8磅/英寸2)20-30min。115(0.75kg/cm2或11磅/英寸2)20-30min。应根据灭菌物品的性质或成分选择灭菌温度例如:生理盐水、营养琼脂等培养基用121。含葡萄糖、乳糖、氨基酸等培养基用112。适用:耐高温物品,玻璃仪器、含水或不含水的物品。,注意事项:排净冷空气;灭菌终了,缓慢降压;灭菌结束,趁热取

26、出物品。,高 压 蒸 汽 灭 菌 锅,高温对培养基的影响及其防止措施,高温对培养基的不利影响:会产生混浊或形成不溶性沉淀营养成分被破坏(PO4-3存在,葡萄糖生成酮糖,菌不利用);色泽加深(褐变如产生氨基糖等);改变培养基的pH值(通常下降0.2);形成有害物质,抑制微生物生长;,消除有害影响的措施 采用特殊的加热灭菌法 过滤除菌法 加入螯合剂 煮沸消毒法 将水加热至100,煮沸15min30min,可杀死所有营养细胞和部分芽孢,达到消毒物的目的。,巴斯德消毒法:用较低的温度来杀死其中的病源微生物,这样既保持食品的营养风味,又进行了消毒 该法一般是将待消毒的液体食品置于62处理30min,然后

27、迅速冷却。即可达到消毒目的。低温长时法:62.930min处理牛奶 高温瞬时法:71.615s处理牛奶 超高温巴斯德灭菌法:让液体食品停留在140左右3-4s,急剧冷却至75,经匀质化后冷却至20。,间歇灭菌法:将待灭菌物品在80-100蒸煮15-60min,冷却后搁置室温(28-37)下过夜,并重复以上过程三遍以上。其蒸煮过程可杀死微生物的营养体,但不能杀死芽胞,室温过夜促使残留的芽孢萌发成营养体,再经蒸煮过程可杀死新的营养体;循环三次以上可保证彻底灭菌的目的。适用于不耐高温的物品灭菌,如不适于高压灭菌的特殊培养基、药品的灭菌。缺点是麻烦、费时。,2、低温抑菌,低温-低温是通过降低酶反应速度

28、使微生物生长受到抑制。冷藏法:5,微生物斜面菌种放置冷藏箱中可保存数周至数月而不衰竭死亡;食品保鲜冷冻法:食品工业中采用-10左右的冷冻温度较长时间地保藏食品;冷冻法也可用作菌种保藏,但所需温度更低,如-80低温冰箱、或-78干冰、或-80液氮中冷冻保存。,(二)过滤除菌法,采用滤孔比细菌还小的筛子或滤膜作成各种过滤器,当空气或液体流经筛子或滤膜时,微生物不能通过滤孔而被阻留在一侧,从而达到灭菌的目的。但不能除去病毒。实验室中常用的滤器:滤膜过滤器、蔡氏过滤器、玻璃过滤器、磁土过滤器等。,过滤介质:醋酸纤维素膜、硝酸纤维素膜、聚丙烯膜;以及石棉板、烧结陶瓷、烧结玻璃等。滤器孔径:常用0.22

29、m、0.45 m。应用:对于含酶、血清、维生素和氨基酸等热敏物质除菌。,(三)辐射,辐射:是能量通过空间传递的一种物理现象。与微生物有关的辐射:电磁辐射:可见光、紫外光,电离辐射:、射线。,电磁辐射:1、可见光:波长在400-800nm的电磁辐射为可见光。大部分微生物不需要光,少数菌需要光作为能源。一般来讲,可见光对大多数化能微生物没有影响,但是,太强或连续长时间照射也会导致微生物死亡(光氧化作用)。,2、紫外线()波长在100 400nm的电磁辐射为紫外线。紫外线杀菌或诱变原理:紫外线作用于DNA,使其产生胸腺嘧啶二聚体,引起DNA结构变形,阻碍正常的碱基配对,从而造成微生物变异或死亡。紫外

30、线会使空气中的分子氧变成臭氧,臭氧释放的原子氧有杀菌作用。其中波长在260 280nm处的紫外线杀菌力最强。主要因为核酸(DNA、RNA)的吸收峰为260nm,蛋白质的吸收峰为280nm。,光复活现象 经紫外线照射的微生物,在可见光下,光可以激活DNA修复酶,该酶能修复DNA上的损伤,使微生物的突变率或死亡率下降。微生物对紫外线的抵抗力与以下因素有关:照射时间:照射时间长,死亡率高。照射强度:照射强度大,死亡率高。,微生物种类及生长阶段:革兰氏阳性菌比阴性菌抗性强;多倍体比单倍体抗性强;孢子和芽孢比营养细胞抗性强;干燥细胞比湿润细胞抗性强。应用:由于穿透力差,只适用于物体表面以及空气、水的消毒

31、杀菌,也用于诱变育种。,电离辐射:、射线,波长短,能量高,有较强的杀伤力。作用原理:可引起水和其他物质的电离,产生游离基,使核酸、蛋白质或酶发生变化,造成细胞损伤或死亡。特点:穿透力强,非专一性,作用于一切细胞成分,对所有生物均有杀伤作用。应用:用于杀菌或菌种诱变。,微波与超声波微波:微波的范围在9152450MHz/s之间。机理:微波产生热效应,使蛋白质、酶等物质变性,导致微生物死亡。特点:加热均匀,热能利用率高、加热时间短。应用:食品消毒、灭菌。,超声波:每秒钟振动在1600以上的声波。机理:引起膜破坏,细胞破裂,内涵物逸出。应用:破碎细胞,提取胞内物质(代谢产物、酶等)杀菌,超声波杀菌效

32、力大小与频率、强度、处理时间等多种因素有关。,紫外线灭菌使用紫外灯照射,可以根据1W/M3来计算剂量,若以面积计算,一般30W的紫外灯可用于15M2的房间消毒,照射时间为20-30分钟,有效照射距离为1米左右。射线灭菌Co60放射性元素可放出射线。灭菌剂量:20-50KGY,二、常用的控菌方法,(一)消毒剂和防腐剂,消毒剂:可以抑制或杀灭微生物,但对人体也可能产生有害作用的化学试剂。主要用于抑制或杀灭物体表面、器械、排泄物和环境中的微生物。防腐剂:可以抑制或阻止微生物生长,但对人体或动物体的毒性较低的化学药剂。用于肌体表面,如皮肤、粘膜、伤口等处防止感染,也有的用于食品、饮料药品的防腐作用。,

33、用量少时,可以防腐,为防腐剂;用量多时可以消毒,为消毒剂;用量更多一些时,就可以起到灭菌作用,为灭菌剂。但现时消毒剂、灭菌剂和防腐剂间的界限已并不很严格,因用量而异。,消毒防腐剂的作用机理一般有下列三种方式:使微生物蛋白质凝固变性,发生沉淀。如酒精等。破坏菌体的酶系统,影响菌体代谢。如过氧化氢等。降低微生物表面张力,增加细胞膜的通透性,使细胞发生破裂或溶解。如来苏儿等酚类物质。,常用的消毒防腐剂及其应用,常用的消毒防腐剂及其应用,常用的消毒防腐剂及其应用,三、影响灭菌和消毒的因素 1、不同的微生物对热的抵抗力和对消毒剂的敏感性不同 2、灭菌处理剂量对微生物的影响 3、微生物的污染程度对灭菌的影

34、响 4、温度的影响 5、湿度的影响 6、酸碱度的影响 7、介质对灭菌的影响 8、穿透条件的影响 9、氧的影响,四、化学治疗剂,化学治疗剂是指那些能够特异性地作用于某些微生物并具有选择毒性的化学药剂,它们与非特异的化学药剂相比对人体几乎没有什么毒性或毒性很小,可用作治疗微生物引起的疾病。既适用于涂抹肌体表面,也始于通过口服或注射吸收到体内。,种类:、抗代谢药物-人工合成的、抗生素-微生物所产生的,1、抗代谢类药物(生长因子类似物):,有些化合物在结构上与生物体所必需的代谢物很相似,以致于可以和特定的酶结合,从而阻碍酶的功能,干扰代谢的正常进行,这些物质叫抗代谢物,用于疾病治疗,称抗代谢类药物,如

35、:磺胺类药物。机理:作为菌细胞基本生长因子的竞争性抑制剂(与相应酶竞争性结合)而阻止微生物对生长因子的利用,因而可以抑制微生物的生长。只有当正常代谢产物的量少或不存在时,抗代谢物才有用。,种类:磺胺药对氨基本甲酸;6-巯基嘌呤嘌呤;5-甲基色氨酸氨基酸;异烟肼吡哆醇。磺胺药作用机理:细菌需要利用对氨基本甲酸合成生长所需的叶酸。,2、抗生素:,微生物在其生命过程中所产生的一类低分子量代谢产物,在很低浓度下就能抑制或杀死其它微生物的生长。最小抑制浓度:表示抗生素的抗菌活性,单位是g/ml。最小抑制浓度可以在液体试管或固体平板上测定。抗菌谱:抗生素的作用对象有一定范围,这种作用范围称该抗生素的抗菌谱。广谱抗生素:对多种微生物有作用(如:土霉素、四环素);窄谱抗生素:仅对某一类微生物有作用(如:多粘菌素),作用机制:(1)抑制细胞壁的合成,如青霉素;(2)破坏细胞膜功能,如多粘菌素可作用于膜磷脂使膜溶解;(3)抑制蛋白质合成,如氯霉素,四环素、链霉素等;(4)干扰核酸代谢,如利福霉素、新生霉素、丝裂霉素、灰黄霉素。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号