《指数及指数幂的运算经典课件.ppt》由会员分享,可在线阅读,更多相关《指数及指数幂的运算经典课件.ppt(39页珍藏版)》请在三一办公上搜索。
1、2.1.1 指数与指数幂的运算(第一课时:根式),问题:当生物死亡后,它机体内原有的碳14会按确定的 规律衰减,大约每经过5730年衰减为原来的一半.根据此规律,人们获得了生物体内碳14含量 P 与 死亡年数 t 之间的关系,考古学家根据(*)式可以知道生物死亡 t 年后,体内的碳14含量P的值.,(*),当生物死亡了5730年后,它体内的碳14含量P的值为,当生物死亡了57302年后,它体内的碳14含量P的值为,当生物死亡了6000年后,它体内的碳14含量P的值为,当生物死亡了10000年后,它体内的碳14含量P的值为,大家能指出右边各式的数学含义吗?,正整数指数幂中将指数的取值范围从整数推
2、广到实数,根 式,1.平方根,若x2=a,则 x 叫做 a 的平方根(a0),2.立方根,若x3=a,则 x 叫做 a 的立方根,无,无,0,2,3,-2,-1,0,2,3,相信你们还没忘记!,类比分析,可是个好方法哟!,3.若x4=a,则 x 叫做 a 的 次方根(a0),4.若x5=a,则 x 叫做 a 的 次方根,5.若xn=a,则 x 叫做 a 的n次方根,四,五,定义1:,当n为奇数时,a的n次方根只有1个,用 表示,当n为偶数时,若a=0,则0的n次方根有1个,是0,若a0,则a的n次方根不存在,若a0,则a的n次方根有2个,(1)27的立方根等于_(4)25的平方根等于_(2)3
3、2的五次方根等于_(5)16的四次方根等于_(3)0的七次方根等于_(6)-16的四次方根等于_,5,3,2,2,不存在,0,小试牛刀,相信你能成功,定义1:,当n为奇数时,a的n次方根只有1个,用 表示,当n为偶数时,若a=0,则0的n次方根有1个,是0,若a0,则a的n次方根不存在,若a0,则a的n次方根有2个,定义2:,式子 叫做根式,n 叫做根指数,a 叫做被开方数,(当n是奇数),(当n是偶数,且a0),即:,我的知识我来构建,那么:,一定成立吗?,一定成立吗?,;,;,;,;,;,;,;,;,;,;,4,9,16,-1,-8,2,3,2,-3,1,试一试,有规律吗?,公式1:,公式
4、2:,当n为奇数时,当n为偶数时,;,;,;,;,;,;,;,;,;,;,4,9,16,-1,-8,2,3,2,3,1,例1:求下列各式的值,知识点小结:,1、两个定义,2、两个公式:,定义1:,定义2:,式子 叫做根式,n 叫做根指数,a 叫做被开方数,1.求下列各式的值:,及时巩固,收获的东西才真正属于你们!,分数指数幂,复习:1、判断下列说法是否正确:(1)2是16的四次方根;(2)正数的n次方根有两个;(3)a 的n次方根是;(4),解:(1)正确;,(2)不正确;,(3)不正确;,(4)正确。,2、求下列各式的值:,解:(1)原式25;(2)原式,2、分数指数幂,初中已学过整数指数幂
5、,知道:,a0=1,(nN*),n 个,(a 0),整数指数幂的运算性质:,(1)、am.an=am+n(a0,m,nZ),(2)、(am)n=amn(a0,n,mZ),(3)、(ab)n=anbn(a0,b0,nZ),下面讨论根式,先看几个实例,(a0),与幂的关系,指数间有关系:,可以认为,定义正数a的分数指数幂意义是:,(m、nN*且n1),0的正分数指数幂等于0;0的负分数指数幂没有意义。,这样,指数的概念就由整数指数幂推广到了分数指数幂,统称有理数指数幂。可以证明,整数指数幂的运算法则对有理指数幂也成立,即有理指数幂有如下的运算法则:,(1)、aras=ar+s(2)、(ar)s=a
6、rs(3)、(ab)r=arbr 其中a0,b0 且r,sQ。,例1、a为正数,用分数指数幂表示下列根式:,解:,解:,解:,解:,口答:1、用根式表示下列各式:(a 0)(1)(2)(3)(4)2、用分数指数幂表示下列各式:(1)(2)(3)(4),例2、利用分数指数幂的运算法则计算下列各式:,解:,=100,=16,例3 化简(a0,x0,rQ):,探究:无理数指数幂的意义,思考1:我们知道 1414 21356,那么 的大小如何确定?,一般地,无理数指数幂(a 0,是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.,小结:1、n次根式的定义及有关概念;,2、幂的运算性质可以从整数指数推广到有理数指数,再推广到实数指数的形式;,3、用分数指数表示根式的目的是为将根式运算转化为指数运算;,哈哈,下课了!我的时间我做主!再见!,