糖代谢 04.ppt

上传人:sccc 文档编号:5741920 上传时间:2023-08-16 格式:PPT 页数:160 大小:4.18MB
返回 下载 相关 举报
糖代谢 04.ppt_第1页
第1页 / 共160页
糖代谢 04.ppt_第2页
第2页 / 共160页
糖代谢 04.ppt_第3页
第3页 / 共160页
糖代谢 04.ppt_第4页
第4页 / 共160页
糖代谢 04.ppt_第5页
第5页 / 共160页
点击查看更多>>
资源描述

《糖代谢 04.ppt》由会员分享,可在线阅读,更多相关《糖代谢 04.ppt(160页珍藏版)》请在三一办公上搜索。

1、糖 代 谢,Metabolism of Carbohydrates,第 4 章,糖的化学,糖(carbohydrates)即碳水化合物,其化学本质为多羟醛或多羟酮类及其衍生物或多聚物。,糖的概念,糖的分类及其结构,根据其水解产物的情况,糖主要可分为以下四大类:,单糖(monosacchride)寡糖(oligosacchride)多糖(polysacchride)结合糖(glycoconjugate),葡萄糖(glucose)(已醛糖),果糖(fructose)(已酮糖),单糖不能再水解的糖,半乳糖(galactose)(已醛糖),核糖(ribose)(戊醛糖),寡糖,常见的几种二糖有:,麦芽

2、糖(maltose):葡萄糖 葡萄糖,蔗 糖(sucrose):葡萄糖 果糖,乳 糖(lactose):葡萄糖 半乳糖,能水解生成几分子单糖的糖,各单糖之间借脱水缩合的糖苷键相连。,多糖能水解生成多个分子单糖的糖。,常见的多糖有:,淀粉(starch),糖原(glycogen),纤维素(cellulose),淀粉是植物中养分的储存形式。,淀粉颗粒,糖原是动物体内葡萄糖的储存形式。,纤维素作为植物的骨架。,-1,4-糖苷键,结合糖糖与非糖物质的结合物。,糖脂(glycolipid):是糖与脂类的结合物。糖蛋白(glycoprotein):是糖与蛋白质的结合物。,常见的结合糖有:,第一节 概述,I

3、ntroduction,一、糖的主要生理功能是氧化供能,糖在生命活动中的主要作用是提供碳源和能源。,如糖可提供合成某些氨基酸、脂肪、胆固醇、核苷等物质的原料。,作为机体组织细胞的组成成分。,提供合成体内其他物质的原料。,如糖是糖蛋白、蛋白聚糖、糖脂等的组成成分。,二、糖的消化吸收主要是在小肠进行,糖的消化,人类食物中的糖主要有植物淀粉、动物糖原以及麦芽糖、蔗糖、乳糖、葡萄糖等,其中以淀粉为主。,消化部位:主要在小肠,少量在口腔。,淀粉,麦芽糖+麦芽三糖(40%)(25%),-临界糊精+异麦芽糖(30%)(5%),葡萄糖,唾液中的-淀粉酶,-葡萄糖苷酶,-临界糊精酶,消化过程:,肠粘膜上皮细胞刷

4、状缘,口腔,肠腔,胰液中的-淀粉酶,食物中含有的大量纤维素,因人体内无-糖苷酶而不能对其分解利用,但却具有刺激肠蠕动等作用,也是维持健康所必需。,糖的吸收,吸收部位:小肠上段,吸收形式:单糖,ADP+Pi,ATP,G,Na+,K+,小肠粘膜细胞,肠腔,门静脉,吸收机制:,Na+依赖型葡萄糖转运体(Na+-dependent glucose transporter,SGLT),刷状缘,细胞内膜,葡萄糖,酵解途径,丙酮酸,有氧,无氧,H2O及CO2,乳酸,乳酸、氨基酸、甘油,糖原,磷酸戊糖途径,核糖+NADPH+H+,淀粉,第二节糖的无氧分解,Glycolysis,在机体缺氧条件下,葡萄糖经一系列

5、酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(glycolysis),亦称糖的无氧氧化(anaerobic oxidation)。糖酵解的反应部位:胞浆,一、糖无氧氧化反应过程分为糖酵解途径和乳酸生成两个阶段,第一阶段:由葡萄糖分解成丙酮酸(pyruvate),称之为糖酵解途径(glycolytic pathway)。第二阶段:由丙酮酸转变成乳酸。,糖酵解分为两个阶段:,葡萄糖磷酸化为6-磷酸葡萄糖,葡萄糖,6-磷酸葡萄糖(glucose-6-phosphate,G-6-P),(一)葡萄糖经酵解途径分解为两分子丙酮酸,哺乳类动物体内已发现有4种己糖激酶同工酶,分别称为至型。肝细胞中存在的

6、是型,称为葡萄糖激酶(glucokinase)。它的特点是:对葡萄糖的亲和力很低;受激素调控。这些特性使葡萄糖激酶在维持血糖水平和糖代谢中起着重要的生理作用。,6-磷酸葡萄糖转变为 6-磷酸果糖,6-磷酸葡萄糖,6-磷酸果糖(fructose-6-phosphate,F-6-P),6-磷酸果糖转变为1,6-双磷酸果糖,ATP ADP,Mg2+,6-磷酸果糖激酶-1,6-磷酸果糖激酶-1(6-phosphfructokinase-1),6-磷酸果糖,1,6-双磷酸果糖(1,6-fructose-biphosphate,F-1,6-2P),1,6-双磷酸果糖,磷酸己糖裂解成2分子磷酸丙糖,磷酸丙糖

7、的同分异构化,3-磷酸甘油醛氧化为1,3-二磷酸甘油酸,3-磷酸甘油醛,1,3-二磷酸甘油酸,1,3-二磷酸甘油酸转变成3-磷酸甘油酸,底物分子内部能量重新分布,生成高能键,直接转移给ADP或GDP生成ATP或GTP的过程,称为底物水平磷酸化(substrate level phosphorylation)。,1,3-二磷酸 甘油酸,3-磷酸甘油酸,3-磷酸甘油酸转变为2-磷酸甘油酸,2-磷酸甘油酸转变为磷酸烯醇式丙酮酸,2-磷酸甘油酸,磷酸烯醇式丙酮酸转变成丙酮酸,并通过底物水平磷酸化生成ATP,磷酸烯醇式丙酮酸,丙酮酸,(二)丙酮酸转变成乳酸,反应中的NADH+H+来自于上述第6步反应中的

8、 3-磷酸甘油醛脱氢反应。,糖酵解的代谢途径,E2,E1,E3,产能的方式和数量方式:底物水平磷酸化净生成ATP数量:从G开始 22-2=2ATP*从Gn开始 22-1=3ATP终产物乳酸的去路释放入血,进入肝脏再进一步代谢:分解利用 乳酸循环(糖异生),二、糖酵解的调控是对3个关键酶活性的调节,关键酶,调节方式,(一)6-磷酸果糖激酶-1对调节酵解途径的流量最重要,变构调节,别构激活剂:AMP;ADP;F-1,6-2P;F-2,6-2P别构抑制剂:柠檬酸;ATP(高浓度),2,6-双磷酸果糖是6-磷酸果糖激酶-1最强的变构激活剂;其作用是与AMP一起取消ATP、柠檬酸对6-磷酸果糖激酶-1的

9、变构抑制作用。,2,6-双磷酸果糖对6-磷酸果糖激酶-1的调节:,(二)丙酮酸激酶是糖酵解的第二个重要的调节点,别构调节,别构抑制剂:ATP,丙氨酸,别构激活剂:1,6-双磷酸果糖,(三)己糖激酶受到反馈抑制调节,6-磷酸葡萄糖可反馈抑制己糖激酶,但肝葡萄糖激酶不受其抑制。长链脂肪酰CoA可别构抑制肝葡萄糖激酶。胰岛素可诱导葡萄糖激酶基因的转录,促进酶的合成。,三、糖酵解的主要生理意义是在机体缺氧的情况下快速供能,是机体在缺氧情况下获取能量的有效方式。是某些细胞在氧供应正常情况下的重要供能途径。,无线粒体的细胞,如:红细胞,代谢活跃的细胞,如:白细胞、骨髓细胞,第三节糖的有氧氧化 Aerobi

10、c Oxidation of Carbohydrate,糖的有氧氧化(aerobic oxidation)指在机体氧供充足时,葡萄糖彻底氧化成H2O和CO2,并释放出能量的过程。是机体主要供能方式。,部位:胞液及线粒体,概念,一、糖有氧氧化的反应过程包括糖酵解途径、丙酮酸氧化脱羧、三羧酸循环及氧化磷酸化,第一阶段:酵解途径,第二阶段:丙酮酸的氧化脱羧,第三阶段:三羧酸循环,G(Gn),第四阶段:氧化磷酸化,丙酮酸,乙酰CoA,H2O,O,ATP,ADP,TAC循环,胞液,线粒体,(一)葡萄糖循糖酵解途径分解为丙酮酸,总反应式:,(二)丙酮酸进入线粒体氧化脱羧生成乙酰CoA,丙酮酸脱氢酶复合体:

11、这一多酶复合体位于线粒体内膜上,原核细胞则在胞液中,E1:丙酮酸脱氢酶E2:二氢硫辛酰胺转乙酰酶E3:二氢硫辛酰胺脱氢酶,TPP 硫辛酸()HSCoAFAD,NAD+Mg 2+,酶,辅酶,丙酮酸脱氢酶复合体催化的反应过程:,1.丙酮酸脱羧形成羟乙基-TPP,由丙酮酸脱氢酶催化(E1)。2.由二氢硫辛酰胺转乙酰酶(E2)催化形成乙酰硫辛酰胺-E2。3.二氢硫辛酰胺转乙酰酶(E2)催化生成乙酰CoA,同时使硫辛酰胺上的二硫键还原为2个巯基。4.二氢硫辛酰胺脱氢酶(E3)使还原的二氢硫辛酰胺脱氢,同时将氢传递给FAD。5.在二氢硫辛酰胺脱氢酶(E3)催化下,将FADH2上的H转移给NAD+,形成NA

12、DH+H+。,CO2,CoASH,NAD+,NADH+H+,5.NADH+H+的生成,1.-羟乙基-TPP的生成,2.乙酰硫辛酰胺的生成,3.乙酰CoA的生成,4.硫辛酰胺的生成,三羧酸循环(Tricarboxylic Acid Cycle,TAC)也称为柠檬酸循环,这是因为循环反应中的第一个中间产物是一个含三个羧基的柠檬酸。由于Krebs正式提出了三羧酸循环的学说,故此循环又称为Krebs循环,它由一连串反应组成。,二、三羧酸循环是以形成柠檬酸为起始物的循环反应系统,概述,反应部位:线粒体,(一)TCA循环由8步代谢反应组成,乙酰CoA与草酰乙酸缩合成柠檬酸 柠檬酸经顺乌头酸转变为异柠檬酸

13、异柠檬酸氧化脱羧转变为-酮戊二酸-酮戊二酸氧化脱羧生成琥珀酰CoA 琥珀酰CoA合成酶催化底物水平磷酸化反应 琥珀酸脱氢生成延胡索酸 延胡索酸加水生成苹果酸 苹果酸脱氢生成草酰乙酸,NADH+H+,NAD+,NAD+,NADH+H+,GTP,GDP+Pi,FAD,FADH2,NADH+H+,NAD+,柠檬酸合酶,顺乌头酸梅,异柠檬酸脱氢酶,-酮戊二酸脱氢酶复合体,琥珀酰CoA合成酶,琥珀酸脱氢酶,延胡索酸酶,苹果酸脱氢酶,小 结:,三羧酸循环的概念:指乙酰CoA和草酰乙酸缩合生成含三个羧基的柠檬酸,反复的进行脱氢脱羧,又生成草酰乙酸,再重复循环反应的过程。TAC过程的反应部位是线粒体。,经过一

14、次三羧酸循环,消耗一分子乙酰CoA;经四次脱氢,二次脱羧,一次底物水平磷酸化;生成 1分子FADH2,3分子NADH+H+,2分子CO2,1分子GTP;关键酶有:柠檬酸合酶,-酮戊二酸脱氢酶复合体,异柠檬酸脱氢酶。,整个循环反应为不可逆反应。,三羧酸循环的要点:,三羧酸循环中间产物起催化剂的作用,本身无量的变化,不可能通过三羧酸循环直接从乙酰CoA合成草酰乙酸或三羧酸循环中其他产物,同样中间产物也不能直接在三羧酸循环中被氧化为CO2及H2O。,三羧酸循环的中间产物:,三羧酸循环的特点:,循环反应在线粒体中进行,为不可逆反应。每完成一次循环,氧化分解掉一分子乙酰基,可生成10分子ATP。循环的中

15、间产物既不能通过此循环反应生成,也不被此循环反应所消耗。循环中有两次脱羧反应,生成两分子CO2。循环中有四次脱氢反应,生成三分子NADHH+和一分子FADH2。循环中有一次直接产能反应,生成一分子GTP。三羧酸循环的关键酶是柠檬酸合酶、异柠檬酸脱氢酶和-酮戊二酸脱氢酶复合体,(二)TCA循环受底物、产物和关键酶活性的调节,TCA循环的速率和流量主要受3种因素的调控:底物的供应量,催化循环最初几步反应酶的反馈别构抑制,产物堆积的抑制作用。,1TCA循环中有3个关键酶,柠檬酸合酶异柠檬酸脱氢酶-酮戊二酸脱氢酶,异柠檬酸 脱氢酶,柠檬酸合酶,-酮戊二酸脱氢酶复合体,柠檬酸,Ca2+,ATP、ADP的

16、影响,产物堆积引起抑制,循环中后续反应中间产物别位反馈抑制前面反应中的酶,其他,如Ca2+可激活许多酶,(三)TCA循环在3大营养物质代谢中具有重要生理意义,TCA循环是三大营养素彻底氧化的最终共同代谢通路。TCA循环是三大营养素代谢联系的枢纽TCA循环为其他合成代谢提供小分子前体TCA循环为氧化磷酸化提供还原当量,H+e 进入呼吸链彻底氧化生成H2O 的同时ADP偶联磷酸化生成ATP-氧化磷酸化,三、糖有氧氧化是机体获得ATP的主要方式,糖的有氧氧化是机体 产能最主要的途径。它不仅产能效率高,而且由于产生的能量逐步分次释放,相当一部分形成ATP,所以能量的利用率也高。,四、糖有氧氧化的调节是

17、基于能量的需求,关键酶,酵解途径:,丙酮酸的氧化脱羧:丙酮酸脱氢酶复合体,三羧酸循环:,己糖激酶丙酮酸激酶6-磷酸果糖激酶-1,柠檬酸合酶-酮戊二酸脱氢酶复合体异柠檬酸脱氢酶,丙酮酸脱氢酶复合体的调节,别构调节,别构抑制剂:乙酰CoA;NADH;ATP别构激活剂:AMP;ADP;NAD+,乙酰CoA/HSCoA或 NADH/NAD+时,其活性也受到抑制。这两种情况见于饥饿、大量脂酸被动员利用时,这时糖的有氧氧化被抑制,大多数组织器官利用脂酸作为能量来源以确保脑等重要组织对葡萄糖的需要。,共价修饰调节,异柠檬酸 脱氢酶,柠檬酸合酶,-酮戊二酸脱氢酶复合体,柠檬酸,Ca2+,ATP、ADP的影响,

18、产物堆积引起抑制,循环中后续反应中间产物别位反馈抑制前面反应中的酶,其他,如Ca2+可激活许多酶,三羧酸循环的调节,有氧氧化的调节特点,有氧氧化的调节通过对其关键酶的调节实现。ATP/ADP或ATP/AMP比值全程调节。该比值升高,所有关键酶均被抑制。氧化磷酸化速率影响三羧酸循环。前者速率降低,则后者速率也减慢。三羧酸循环与酵解途径互相协调。三羧酸循环需要多少乙酰CoA,则酵解途径相应产生多少丙酮酸以生成乙酰CoA。,体内ATP浓度是AMP的50倍,经上述反应后,ATP/AMP变动比ATP变动大,有信号放大作用,从而发挥有效的调节作用。,有氧氧化全过程中许多酶的活性都受细胞内ATP/ADP或A

19、TP/AMP比率的影响,因而能得以协调。,五、巴斯德效应是指糖有氧氧化抑制糖酵解的现象,概念,机制,有氧时,NADH+H+进入线粒体内氧化,丙酮酸进入线粒体进一步氧化而不生成乳酸;缺氧时,酵解途径加强,NADH+H+在胞浆浓度升高,丙酮酸作为氢接受体生成乳酸。,巴斯德效应(Pastuer effect)指有氧氧化抑制糖酵解的现象。,第 四 节 葡萄糖的其他代谢途径Other Metabolism Pathways of Glucose,概念,磷酸戊糖途径(pentose phosphate pathway)是指由葡萄糖生成磷酸戊糖及NADPH+H+,前者再进一步转变成3-磷酸甘油醛和6-磷酸果

20、糖的反应过程。,一、磷酸戊糖途径生成ADPH和磷酸戊糖,细胞定位:胞液,第一阶段:氧化反应,(一)磷酸戊糖途径的反应过程分为两个阶段,反应过程可分为二个阶段:,第二阶段:非氧化反应,生成磷酸戊糖,NADPH+H+及CO2。,包括一系列基团转移。,6-磷酸葡萄糖酸,5-磷酸核酮糖,6-磷酸葡萄糖脱氢酶,6-磷酸葡萄糖酸脱氢酶,6-磷酸葡萄糖,6-磷酸葡萄糖酸内酯,16-磷酸葡萄糖在氧化阶段生成磷酸戊糖和NADPH,5-磷酸核糖,催化第一步脱氢反应的6-磷酸葡萄糖脱氢酶是此代谢途径的关键酶。两次脱氢脱下的氢均由NADP+接受生成NADPH+H+。反应生成的磷酸核糖是一个非常重要的中间产物。,G-6

21、-P,5-磷酸核糖,NADP+,NADPH+H+,NADP+,NADPH+H+,CO2,第二阶段反应的意义就在于通过一系列基团转移反应,将核糖转变成6-磷酸果糖和3-磷酸甘油醛而进入酵解途径。因此磷酸戊糖途径也称磷酸戊糖旁路(pentose phosphate shunt)。,2经过基团转移反应进入糖酵解途径,5-磷酸核酮糖(C5)3,5-磷酸核糖C5,磷酸戊糖途径,第一阶段,第二阶段,总反应式:,磷酸戊糖途径的特点:,脱氢反应以NADP+为受氢体,生成NADPH+H+。反应过程中进行了一系列酮基和醛基转移反应,经过了3、4、5、6、7碳糖的演变过程。反应中生成了重要的中间代谢物5-磷酸核糖。

22、一分子G-6-P经过反应,只能发生一次脱羧和二次脱氢反应,生成一分子CO2和2分子NADPH+H+。,(二)磷酸戊糖途径主要受NADPH/NADP+比值的调节,6-磷酸葡萄糖脱氢酶此酶为磷酸戊糖途径的关键酶,其活性的高低决定6-磷酸葡萄糖进入磷酸戊糖途径的流量。此酶活性主要受NADPH/NADP+比值的影响,比值升高则被抑制,降低则被激活。另外NADPH对该酶有强烈抑制作用。因此,磷酸戊糖途径的流量主要取决于NADPH的需求。,(三)磷酸戊糖途径的生理意义在于生成NADPH和5-磷酸核糖,2提供NADPH作为供氢体参与多种代谢反应,1为核酸的生物合成提供核糖,(1)NADPH是体内许多合成代谢

23、的供氢体;(2)NADPH参与体内羟化反应;(3)NADPH还用于维持谷胱甘肽(glutathione,GSH)的还原状态。,氧化型谷胱甘肽,还原型谷胱甘肽,还原型谷胱甘肽是体内重要的抗氧化剂,可以保护一些含-SH基的蛋白质或酶免受氧化剂尤其是过氧化物的损害。在红细胞中还原型谷胱甘肽更具有重要作用。它可以保护红细胞膜蛋白的完整性。缺乏6-p葡萄糖脱氢酶,引起蚕豆病。,二、糖醛酸途径可生成葡萄糖醛酸,反应过程:,对人类而言,糖醛酸途径的主要生理意义在于生成活化的葡萄糖醛酸,即UDPGA。葡萄糖醛酸是组成蛋白聚糖的糖胺聚糖,如透明质酸、硫酸软骨素、肝素等的组成成分。葡萄糖醛酸在生物转化过程中参与很

24、多结合反应。,生理意义:,三、多元醇途径可生成木糖醇、山梨醇等,葡萄糖代谢过程中可生成一些多元醇,如木糖醇(xylitol)、山梨醇(sorbitol)等,所以被称为多元醇途径(polyol pathway)。但这些代谢过程局限于某些组织,对整个葡萄糖代谢所占比重极少。,第 五 节 糖原的合成与分解Glycogenesis and Glycogenolysis,糖 原(glycogen)是动物体内糖的储存形式之一,是机体能迅速动用的能量储备。,糖原的定义:,糖原储存的主要器官及其生理意义:,1.葡萄糖单元以-1,4-糖苷键形成长链。2.约10个葡萄糖单元处形成分枝,分枝处葡萄糖以-1,6-糖苷

25、键连接,分支增加,溶解度增加。3.每条链都终止于一个非还原端.非还原端增多,以利于其被酶分解。,糖原的结构特点及其意义:,一、糖原的合成代谢主要在肝和肌组织中进行,合成部位:,糖原的合成(glycogenesis)指由葡萄糖合成糖原的过程。,组织定位:主要在肝脏、肌肉细胞定位:胞浆,1.葡萄糖磷酸化生成6-磷酸葡萄糖,葡萄糖,6-磷酸葡萄糖,糖原合成途径:,2.6-磷酸葡萄糖转变成1-磷酸葡萄糖,此反应中磷酸基团转移的意义在于:由于延长形成-1,4-糖苷键,所以葡萄糖分子C1上的半缩醛羟基必须活化,才利于与原来的糖原分子末端葡萄糖的游离C4羟基缩合。半缩醛羟基与磷酸基之间形成的O-P键具有较高

26、的能量。,UDPG 可看作“活性葡萄糖”,在体内充作葡萄糖供体。,3.1-磷酸葡萄糖转变成尿苷二磷酸葡萄糖,4.-1,4-糖苷键式结合,糖原n 为原有的细胞内的较小糖原分子,称为糖原引物(primer),作为UDPG 上葡萄糖基的接受体。,.糖原分枝的形成,近来人们在糖原分子的核心发现了一种名为glycogenin的蛋白质。Glycogenin可对其自身进行共价修饰,将UDP-葡萄糖分子的C1结合到其酶分子的酪氨酸残基上,从而使它糖基化。这个结合上去的葡萄糖分子即成为糖原合成时的引物。,?糖原合成过程中作为引物的第一个糖原分子从何而来,糖原合酶催化的反应需要引物(多聚葡萄糖)(glycogen

27、 synthase)(primer)分枝酶形成分枝(bronching enzyme)糖原合酶是关键酶(key enzyme)UDPG是葡萄糖的供体(葡萄糖的活性形式)每增加一个葡萄糖,消耗 2 Pi,糖原合成特点,二、肝糖原分解产物葡萄糖可补充血糖,亚细胞定位:胞浆,肝糖原的分解过程:,1.糖原的磷酸解,糖原分解(glycogenolysis)习惯上指肝糖原分解成为葡萄糖的过程。,2.脱枝酶的作用,转移葡萄糖残基水解-1,6-糖苷键,脱枝酶,(debranching enzyme),磷酸化酶,转移酶活性,-1,6糖苷酶活性,在几个酶的共同作用下,最终产物中约85%为1-磷酸葡萄糖,15%为游

28、离葡萄糖。,3.1-磷酸葡萄糖转变成6-磷酸葡萄糖,4.6-磷酸葡萄糖水解生成葡萄糖,葡萄糖-6-磷酸酶只存在于肝、肾中,而不存在于肌中。所以只有肝和肾可补充血糖;而肌糖原不能分解成葡萄糖,只能进行糖酵解或有氧氧化。,肌糖原的分解,肌糖原分解的前三步反应与肝糖原分解过程相同,但是生成6-磷酸葡萄糖之后,由于肌肉组织中不存在葡萄糖-6-磷酸酶,所以生成的6-磷酸葡萄糖不能转变成葡萄糖释放入血,提供血糖,而只能进入酵解途径进一步代谢。肌糖原的分解与合成与乳酸循环有关。,磷酸化酶只作用于-1,4 糖苷键磷酸化酶催化至距-1,6糖苷键 4个葡萄糖单位时作 用停止脱支酶转移3个葡萄糖基至邻近糖链末端,并

29、水解-1,6糖苷键 生成游离葡萄糖磷酸化酶是关键酶(key enzyme)肌糖原不能分解为葡萄糖,糖原分解的特点,G-6-P的代谢去路:,G(补充血糖),G-6-P,F-6-P(进入酵解途径),G-1-P,Gn(合成糖原),UDPG,6-磷酸葡萄糖内酯(进入磷酸戊糖途径),葡萄糖醛酸(进入葡萄糖醛酸途径),小结,糖原的合成与分解总图,糖原的合成与分解是分别通过两条不同途径进行的。这种合成与分解循两条不同途径进行的现象,是生物体内的普遍规律。这样才能进行精细的调节。当糖原合成途径活跃时,分解途径则被抑制,才能有效地合成糖原;反之亦然。,三、糖原合成与分解受到彼此相反的调节,它们的快速调节有共价修

30、饰和变构调节二种方式。它们都以活性、无(低)活性二种形式存在,二种形式之间可通过磷酸化和去磷酸化而相互转变。,这两种关键酶调节的重要特点:,(一)糖原磷酸化酶是糖原分解的关键酶,糖原磷酸化酶的共价修饰调节,磷酸化酶二种构像紧密型(T)和疏松型(R),其中T型的14位Ser暴露,便于接受前述的共价修饰调节。,葡萄糖是磷酸化酶的别构抑制剂。,糖原磷酸化酶的变构调节,(二)糖原合酶是糖原合成的关键酶,糖原合酶的共价修饰调节,磷酸化酶b激酶,糖原合酶,糖原合酶-P,磷酸化酶b,磷酸化酶a-P,磷蛋白磷酸酶抑制剂,两种酶磷酸化或去磷酸化后活性变化相反;此调节为酶促反应,调节速度快;调节有级联放大作用,效

31、率高;受激素调节。,糖原磷酸化酶和糖原合酶的共价修饰调节特点:,肌肉内糖原代谢的二个关键酶的调节与肝糖原不同:,在糖原分解代谢时肝主要受胰高血糖素的调节,而肌肉主要受肾上腺素调节。肌肉内糖原合酶及磷酸化酶的变构效应物主要为AMP、ATP及6-磷酸葡萄糖。,调节小结:,双向调控:对合成酶系与分解酶系分别进行调节,如加强合成则减弱分解,或反之。,双重调节:别构调节和共价修饰调节。,肝糖原和肌糖原代谢调节各有特点:如分解肝糖原的激素主要为胰高血糖素,分解肌糖原的激素主要为肾上腺素。,关键酶调节上存在级联效应。,关键酶都以活性、无(低)活性二种形式存在,二种形式之间可通过磷酸化和去磷酸化而相互转变。,

32、四、糖原积累症是由先天性酶缺陷所致,糖原累积症(glycogen storage diseases)是一类遗传性代谢病,其特点为体内某些器官组织中有大量糖原堆积。引起糖原累积症的原因是患者先天性缺乏与糖原代谢有关的酶类。,糖原积累症分型,第 六 节 糖 异 生Gluconeogenesis,糖异生(gluconeogenesis)是指从非糖化合物转变为葡萄糖或糖原的过程。,部位:,原料:,概念:,主要在肝、肾细胞的胞浆及线粒体。,主要有乳酸、甘油、生糖氨基酸。,一、糖异生途径不完全是糖酵解的逆反应,过程:,酵解途径中有3个由关键酶催化的不可逆反应。在糖异生时,须由另外的反应和酶代替。,糖异生途

33、径与酵解途径大多数反应是共有的、可逆的;,糖异生途径(gluconeogenic pathway)指从丙酮酸生成葡萄糖的具体反应过程。,(一)丙酮酸经丙酮酸羧化支路变为磷酸烯醇式丙酮酸,丙酮酸,草酰乙酸,PEP,丙酮酸羧化酶(pyruvate carboxylase),辅酶为生物素(反应在线粒体),磷酸烯醇式丙酮酸羧激酶(反应在线粒体、胞液),草酰乙酸转运出线粒体:,丙酮酸,线粒体,胞液,糖异生途径所需NADH+H+的来源:,糖异生途径中,1,3-二磷酸甘油酸生成3-磷酸甘油醛时,需要NADH+H+。,由乳酸为原料异生糖时,NADH+H+由下述反应提供。,乳酸,丙酮酸,LDH,NAD+,NAD

34、H+H+,由氨基酸为原料进行糖异生时,NADH+H+则由线粒体内NADH+H+提供,它们来自于脂酸的-氧化或三羧酸循环,NADH+H+转运则通过草酰乙酸与苹果酸相互转变而转运。,(二)1,6-双磷酸果糖转变为6-磷酸果糖,(三)6-磷酸葡萄糖水解为葡萄糖,在以上反应过程中,作用物的互变反应分别由不同的酶催化其单向反应,这种互变循环被称为底物循环(substrate cycle)。当两种酶活性相等时,就不能将代谢向前推进,结果仅是ATP分解释放出能量,因而又称为无效循环(futile cycle)。而在细胞内两酶活性不完全相等,使代谢反应仅向一个方向进行。,非糖物质进入糖异生的途径,糖异生的原料

35、转变成糖代谢的中间产物,生糖氨基酸,-酮酸,-NH2,甘油,-磷酸甘油,磷酸二羟丙酮,乳酸,丙酮酸,2H,上述糖代谢中间代谢产物进入糖异生途径,异生为葡萄糖或糖原,小 结1、定义:由非糖物质转变为G或Gn的过程2、反应部位:胞液和线粒体 3、原料:乳酸、甘油、生糖氨基酸4、三个能障:丙酮酸磷酸烯醇式丙酮酸;F-1,6-2PF-6-P;G-6-PG5、所需NADH+H+的来源:乳酸为原料时直接来自乳酸脱氢反应;其他物质为原料时来自线粒体 中脂肪酸的-氧化和TAC6、消耗ATP的数目:每2分子乳酸异生一分子G需要消 耗6个ATP,二、糖异生的调节通过对2个底物循环的调节与糖酵解调节彼此协调,酵解途

36、径与糖异生途径是方向相反的两条代谢途径。如从丙酮酸进行有效的糖异生,就必须抑制酵解途径,以防止葡萄糖又重新分解成丙酮酸;反之亦然。这种协调主要依赖于对这两条途径中的前两个底物循环进行调节。,(一)第一个底物循环在6-磷酸果糖与1,6-双磷酸果糖之间进行,(二)在磷酸烯醇式丙酮酸和丙酮酸之间进行第二个底物循环,PEP,丙酮酸,ATP,ADP,丙酮酸激酶,1,6-双磷酸果糖,丙氨酸,乙 酰 CoA,草酰乙酸,三、糖异生的生理意义主要在于维持血糖水平恒定,(一)维持血糖水平的恒定是糖异生最主要的生理作用,空腹或饥饿时,依赖氨基酸、甘油等异生成葡萄糖,以维持血糖水平恒定。正常成人的脑组织不能利用脂酸,

37、主要依赖葡萄糖供给能量(120克);红细胞没有线粒体,完全通过糖酵解获得能量;骨髓、神经等组织由于代谢活跃,经常进行糖酵解。这样,即使在非饥饿状况下,机体也需消耗一定量的糖,以维持生命活动。此时这些糖全部依赖糖异生生成。,糖异生的主要原料为乳酸、氨基酸及甘油。,乳酸来自肌糖原分解。这部分糖异生主要与运动强度有关。而在饥饿时,糖异生的原料主要为氨基酸和甘油(糖异生可以促进脂肪氧化分解供应能量,当体内糖供应不足时,机体会大量动员脂肪分解,此时会产生过多的酮体(乙酰乙酸、-羟丁酸、丙酮),而酮体则必须经过三羧酸循环才能彻底氧化,此时糖异生对维持三羧酸循环的正常进行起主要作用)。,(二)糖异生是补充或

38、恢复肝糖原储备的重要途径,三碳途径:指进食后,大部分葡萄糖先在肝外细胞中分解为乳酸或丙酮酸等三碳化合物,再进入肝细胞异生为糖原的过程。,长期饥饿或禁食时,肾糖异生增强,有利于维持酸碱平衡。发生这一变化的原因可能是饥饿造成的代谢性酸中毒造成的。此时体液pH降低,促进肾小管中磷酸烯醇式丙酮酸羧激酶的合成,从而使糖异生作用增强。另外,当肾中-酮戊二酸因异生成糖而减少时,可促进谷氨酰胺脱氨生成谷氨酸以及谷氨酸的脱氨反应,肾小管细胞将NH3分泌入管腔中,与原尿中H+结合,降低原尿H+的浓度,有利于排氢保钠作用的进行,对于防止酸中毒有重要作用。,(三)肾糖异生增强有利于维持酸碱平衡,四、肌中产生的乳酸运输

39、至肝进行糖异生形成乳酸循环,肌收缩(尤其是供氧不足时)通过糖酵解生成乳酸。肌内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝内异生为葡萄糖。葡萄糖释入血液后又可被肌摄取,这就构成了一个循环,此循环称为乳酸循环,也称Cori循环。乳酸循环的形成是由于肝和肌组织中酶的特点所致。,糖异生活跃有葡萄糖-6磷酸酶,【,】,循环过程,肝,肌肉,葡萄糖,葡萄糖,葡萄糖,酵解途径,丙酮酸,乳酸,NADH,NAD+,乳酸,乳酸,NAD+,NADH,丙酮酸,糖异生途径,血液,糖异生低下没有葡萄糖-6磷酸酶,【,】,生理意义,乳酸再利用,避免了乳酸的损失。,防止乳酸的堆积引起酸中毒。,乳酸循环是一个耗

40、能的过程,2分子乳酸异生为1分子葡萄糖需6分子ATP。,6-磷酸葡萄糖的代谢途径及其在糖代谢中的重要作用,6-磷酸葡萄糖的来源:己糖激酶或葡萄糖激酶催化葡萄糖磷酸化生成6-磷酸葡萄。糖原分解产生的1-磷酸葡萄糖转变为6-磷酸葡萄糖。非糖物质经糖异生由6-磷酸果糖异构为6-磷酸葡萄糖。6-磷酸葡萄糖的去路:经糖酵解生成乳酸。经糖的有氧氧化彻底氧化生成CO2、H2O和ATP。通过变位酶催化生成1-磷酸葡萄糖,合成糖原。在6-磷酸葡萄糖脱氢酶催化下进入磷酸戊糖途径。6-磷酸葡萄糖是糖代谢各个代谢途径的交叉点,是各代谢途径的共同中间产物,上述各条代谢途径不能顺利进行。因此,6-磷酸葡萄糖的代谢方向取决

41、于各条代谢途径中相关酶的活性大小。,第 八 节 血糖及其调节The Definition,Level and Regulation of Blood Glucose,血糖,指血液中的葡萄糖。,血糖水平,即血糖浓度。,血糖及血糖水平的概念:,正常血糖浓度:3.896.11mmol/L,血糖水平恒定的生理意义:,保证重要组织器官的能量供应,特别是某些依赖葡萄糖供能的组织器官。,脑组织不能利用脂酸,正常情况下主要依赖葡萄糖供能;红细胞没有线粒体,完全通过糖酵解获能;骨髓及神经组织代谢活跃,经常利用葡萄糖供能。,血糖,一、血糖的来源和去路是相对平衡的,二、血糖水平的平衡主要是受到激素调节,血糖水平保持

42、恒定是糖、脂肪、氨基酸代谢协调的结果,也是肝、肌、脂肪组织等各器官组织代谢协调的结果。机体的各种代谢以及各器官之间能这样精确协调,以适应能量、燃料供求的变化,主要依靠激素的调节。酶水平的调节是最基本的调节方式和基础。,主要调节激素,降低血糖:胰岛素(insulin),升高血糖:,胰高血糖素(glucagon)糖皮质激素肾上腺素,胰岛素(Insulin)是体内唯一的降低血糖的激素,也是唯一同时促进糖原、脂肪、蛋白质合成的激素。胰岛素的分泌受血糖控制,血糖升高立即引起胰岛素分泌;血糖降低,分泌即减少。,(一)胰岛素是体内唯一降低血糖的激素,(二)机体在不同状态下有相应的升高血糖的激素,1胰高血糖素

43、(glucagon)是体内主要升高血糖的激素,血糖降低或血内氨基酸升高刺激胰高血糖素的分泌。,胰岛素和胰高血糖素是调节血糖,实际上也是调节三大营养物代谢最主要的两种激素。机体内糖、脂肪、氨基酸代谢的变化主要取决于这两种激素的比例。不同情况下这两种激素的分泌是相反的。引起胰岛素分泌的信号(如血糖升高)可抑制胰高血糖素分泌。反之,使胰岛素分泌减少的信号可促进胰高血糖素分泌。,正常人体内存在一套精细的调节糖代谢的机制,在一次性食入大量葡萄糖后,血糖水平不会出现大的波动和持续升高。,人体对摄入的葡萄糖具有很大的耐受能力的现象称为葡萄糖耐量(glucose tolerence)。,三、血糖水平异常及糖尿

44、病是最常见的糖代谢紊乱,临床上因糖代谢障碍可发生血糖水平紊乱,常见有以下两种类型:,低血糖(hypoglycemia)高血糖(hyperglycemia),(一)低血糖是指血糖浓度低于3.0mmol/L,低血糖影响脑的正常功能,因为脑细胞所需要的能量主要来自葡萄糖的氧化。当血糖水平过低时,就会影响脑细胞的功能,从而出现头晕、倦怠无力、心悸等,严重时出现昏迷,称为低血糖休克。如不及时给病人静脉补充葡萄糖,可导致死亡。,低血糖的危害:,胰性(胰岛-细胞机能亢进、胰岛-细胞机能低下等);肝性(肝癌、糖原累积病等);内分泌异常(垂体机能低下、肾上腺皮质机能低下等);肿瘤(胃癌等);饥饿或不能进食者等。

45、,低血糖的原因:,(二)高血糖是指空腹血糖高于6.9mmol/L,临床上将空腹血糖浓度高于5.66.9mmol/L 称为高血糖(hyperglycemia)。当血糖浓度超过了肾小管的重吸收能力(肾糖阈),则可出现糖尿。持续性高血糖和糖尿,特别是空腹血糖和糖耐量曲线高于正常范围,主要见于糖尿病(diabetes mellitus)。,糖尿病;遗传性胰岛素受体缺陷某些慢性肾炎、肾病综合症等;生理性高血糖和糖尿。,高血糖的原因:,(三)糖尿病是最常见的糖代谢紊乱疾病,糖尿病是一种因部分或完全胰岛素缺失、或细胞胰岛素受体减少、或受体敏感性降低导致的疾病,它是除了肥胖症之外人类最常见的内分泌紊乱性疾病。,型(胰岛素依赖型)型(非胰岛素依赖型),糖尿病可分为二型:,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号