时间序列模型.docx

上传人:李司机 文档编号:5876485 上传时间:2023-08-28 格式:DOCX 页数:14 大小:34.37KB
返回 下载 相关 举报
时间序列模型.docx_第1页
第1页 / 共14页
时间序列模型.docx_第2页
第2页 / 共14页
时间序列模型.docx_第3页
第3页 / 共14页
时间序列模型.docx_第4页
第4页 / 共14页
时间序列模型.docx_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《时间序列模型.docx》由会员分享,可在线阅读,更多相关《时间序列模型.docx(14页珍藏版)》请在三一办公上搜索。

1、时间序列模型一、分类按所争论的对象的多少分,有一元时间序列和多元时间序列。按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种。按序列的统计特性分,有平稳时间序列和非平稳时间序列。狭义时间序列:假如一个时间序列的概率分布与时间f无关。广义时间序列:假如序列的一、二阶矩存在,而且对任意时刻f满意均值为常数和协方差为时间间隔T的函数。(下文主要争论的是广义时间序列)。按时间序列的分布规律来分,有高斯型时间序列和非高斯型时间序列。二、确定性时间序列分析方法概述时间序列猜测技术就是通过对猜测目标自身时间序列的处理,来争论其变化趋势的。一个时间序列往往是以下几类变化形式的叠加或耦合。长期趋势变动

2、:它是指时间序列朝着肯定的方向持续提升或下降,或停留在某一水平上的倾向,它反映了客观事物的主要变化趋势。通常用Tt表示。季节变动:通常用St表示。循环变动:通常是指周期为一年以上,由非季节因素引起的涨落起伏波形相像的波动。通常用Ct表示。不规章变动。通常它分为突然变动和随机变动。通常用Rt表示。也称随机干扰项。常见的时间序列模型:加法模型:Yt=StTt+Ct+Rt.乘法模型:Yt=SfTfCfRt.混合模型:%=StT+Rt;yt=sttctRt.Rt2这三个模型中皆表示观测目标的观测纪录,E(Rt)=O,E(Rt2)=2假如在猜测时间范围以内,无突然变动且随机变动的方差。2较小,并且有理由

3、认为过去和现在的演化趋势将连续进展到将来时,可用一些阅历方法进行猜测。三、移动平均法当时间序列的数值由于受周期变动和不规章变动的影响,起伏较大,不易显示出进展趋势时,可用移动平均法,消退这些因素的影响,分析、猜测序列的长期趋势。移动平均法有简洁移动平均法,加权移动平均法,趋势移动平均法等。3.1、 简洁移动平均法当猜测目标的基本趋势是在某一水平上下波动时,可用一次简洁移动平均方法建立猜测模型:其猜测目标的标准差为:当然我们还可以得到如下递推关系:N的选取方式:一般N取值范围:5N200.当历史序列的基本趋势变化不大且序列中随机变动成分较多时,N的取值应较大一些。否则N的取值应小一些。选择不同的

4、N比较若干模型的猜测误差,猜测标准误差最小者为最好。3.2、 加权移动平均法在简洁移动平均公式中,每期数据在求平均时的作用是等同的。但是,每期数据所包含的信息量不一样,近期数据包含着更多关于将来状况的信念。因此,把各期数据等同看待是不尽合理的,应考虑各期数据的重要性,对近期数据赐予较大的权重,这就是加权移动平均法的基本思想。其中Wi为yji+权数,体现了相应的胃在加权平均数中的重要性。在加权移动平均法中,的选择,Wi同样具有肯定的阅历性。一般的原则是:近期数据的权数大,远期数据的权数小。至于大到什么程度和小到什么程度,则需要依据猜测者对序列的了解和分析来确定。3.3、 趋势移动平均法简洁移动平

5、均法和加权移动平均法,在时间序列没有明显的趋势变动时,能够精确反映实际状况。但当时间序列消失直线增加或削减的变动趋势时,用简洁移动平均法和加权移动平均法来猜测就会消失滞后偏差。因此,需要进行修正,修正的方法是作二次移动平均,采用移动平均滞后偏差的规律来建立直线趋势的猜测模型。这就是趋势移动平均法。一次移动的平均数为二次移动的平均数为下面争论如何采用移动平均的滞后偏差建立直线趋势猜测模型:设时间序列W从某时期开头具有直线趋势,且认为将来时期也按此直线趋势变化,则可设此直线趋势猜测模型为其中,为当前时期数;T为由至猜测期的时期数;at为截距,瓦为系数,两者均称为平滑系数。可以推算出:趋势移动平均法

6、对于同时存在直线趋势与周期波动的序列,是一种既能反映趋势变化,又可以有效地分别出来周期变动的方法。四、指数平滑法一次移动平均实际上认为最近N期数据对将来值影响相同,都加权而N期以前的数据对将来值没有影响,加权为0。但是,二次及更高次移动平均数的权数却不是且次数越高,权数的结构越简单,但永久保持对称的权数,即两端项权数小,中间项权数大,不符合一般系统的动态性。一般说来历史数据对将来值的影响是随时间间隔的增长而递减的。所以,更切合实际的方法应是对各期观测值依时间挨次进行加权平均作为猜测值。指数平滑法可满意这一要求,而且具有简洁的递推形式。指数平滑法依据平滑次数的不同,又分为一次指数平滑法、二次指数

7、平滑法和三次指数平滑法等,分别介绍如下:4.1、 一次指数平滑法其中a为加权系数。猜测模型为:即+(1也就是以第Z期指数平滑值作为什1期猜测值。如何选择加权系数?详细如何选择一般可遵循下列原则:假如时间序列波动不大,比较平稳,则应取小一点,如(0.15)O以削减修正幅度,使猜测模型能包含较长时间序列的信息;假如时间序列具有快速且明显的变动倾向,则以应取大一点,如(0.60.8)。使猜测模型灵敏度高一些,以便快速跟上数据的变化。在有用上,类似移动平均法,多取几个值进行试算,看哪个猜测误差小,就采纳哪个。如何确定初值So?详细如何选择一般可遵循下列原则:当时间序列的数据较多,比如在20个以上时,初

8、始值对以后的猜测值影响很少,可选用第一期数据为初始值。假如时间序列的数据较少,在20个以下时,初始值对以后的猜测值影响很大,这时,就必需仔细争论如何正确确定初始值。一般以最初几期实际值的平均值作为初始值。4.2、 二次指数平滑法当时间序列的变动消失直线趋势时,采纳二次指数平滑法其中St为一次指数的平滑值;工(2)为二次指数的平滑值。当时间序列/,从某时期开头具有直线趋势时,类似趋势移动平均法,可用直线趋势模型:进行猜测。4.3、 三次指数平滑法当时间序列的变动表现为二次曲线趋势时,则需要用三次指数平滑法。三次指数平滑是在二次指数平滑的基础上,再进行一次平滑,其计算公式为式中St为三次指数平滑值

9、三次指数平滑法的猜测模型为:其中:选择值的一些基本准则:指数平滑猜测模型是以时刻t为起点,综合历史序列的信息,对将来进行猜测的。选择合适的加权系数是提高猜测精度的关键环节。依据实践阅历,。的取值范围一般以O.l0.3为宜。值愈大,加权系数序列衰减速度愈快,所以实际上取值大小起着掌握参与平均的历史数据的个数的作用。值愈大意味着采纳的数据愈少。(1)假如序列的基本趋势比较稳,猜测偏差由随机因素造成,则值应取小一些,以削减修正幅度,使猜测模型能包含更多历史数据的信息。(2)假如猜测目标的基本趋势已发生系统地变化,则a值应取得大一些。这样,可以偏重新数据的信息对原模型进行大幅度修正,以使猜测模型适应猜

10、测目标的新变化。如何确定初值?初始值可以取前35个数据的算术平均值作为初始值。五、差分指数平滑法当时间序列的变动具有直线趋势时,用一次指数平滑法会消失滞后偏差,其缘由在于数据不满意模型要求。因此,我们也可以从数据变换的角度来考虑改进措施,即在运用指数平滑法以前先对数据作一些技术上的处理,使之能适合于一次指数平滑模型,以后再对输出结果作技术上的返回处理,使之恢复为原变量的形态。差分方法是转变数据变动趋势的简易方法。1.1、 一阶差分指数平滑法当时间序列呈直线增加时,可运用一阶差分指数平滑模型来猜测。其中的?为差分记号。第一个式子表示对呈现直线增加的序列作一阶差分,构成一个平稳的新序列,其次个式子

11、表示把经过一阶差分后的新序列的指数平滑猜测值与变量当前的实际值迭加,作为变量下一期的猜测值。指数平滑值实际上是一种加权平均数。因此把序列中逐期增量的加权平均数(指数平滑值)加上当前值的实际数进行猜测,比一次指数平滑法只用变量以往取值的加权平均数作为下一期的猜测更合理。从而使猜测值始终围绕实际值上下波动,从根本上解决了在有直线增长趋势的状况下,用一次指数平滑法所得出的结果始终落后于实际值的问题。5. 2二阶差分指数平滑模型当时间序列呈现二次曲线增长时,可用二阶差分指数平滑模型来猜测,计算公式如下:其中?2表示二阶差分。差分方法和指数平滑法的联合运用,除了能克服一次指数平滑法的滞后偏差之外,对初始

12、值的问题也有显着的改进。由于数据经过差分处理后,所产生的新序列基本上是平稳的。这时,初始值取新序列的第一期数据对于将来猜测值不会有多大影响。其次,它拓展了指数平滑法的适用范围,使一些原来需要运用协作直线趋势模型处理的状况可用这种组合模型来取代。但是,对于指数平滑法存在的加权系数。的选择问题,以及只能逐期猜测问题,差分指数平滑模型也没有改进。六、自适应滤波法5.1、 自适应滤波法的基本过程自适应滤波法与移动平均法、指数平滑法一样,也是以时间序列的历史观测值进行某种加权平均来猜测的,它要查找一组“最佳”的权数,其方法是先用一组给定的权数来计算一个猜测值,然后计算猜测误差,再依据猜测误差调整权数以削

13、减误差。这样反进行,直至找出一组“最佳”权数,使误差削减到最低限度。由于这种调整权数的过程与通讯工程中的传输噪声过滤过程极为接近,故称为自适应滤波法。自适应滤波法的基本猜测公式为:其中为第t+1期的猜测值,Wi为第t-i+1期的观测值权数,yt-i+为第期的观测值,N为权数的个数。其调整权数的公式为:式中4=1,2,?,1=1出+1,?11,11为序列数据的个数,Wi为调整前的第i个权数,”为调整后的第i个权数,k为学习常数,5+1为第t+1期的猜测误差。该式表明调整后的一组权数应等于旧的一组权数加上误差调整项,这个调整项包括猜测误差、原观测值和学习常数等三个因素。学习常数k的大小打算权数调整

14、的速度。6. 2N,k值和初始权数的确定在开头调整权数时,首先要确定权数个数N和学习常数k。一般说来,当时间序列的观测值呈季节变动时,N应取季节性长度值。如序列以一年为周期进行季节变动时,若数据是月度的,则取N=12,若季节是季度的,则取N二4。假如时间序列无明显的周期变动,则可用自相关系数法来确定,即取N为最高自相关系数的滞后时期。k的取值一般可定为1/N,也可以用不同的k值来进行计算,以确定一个能使S最小的Mt。初始权数的确定也很重要,如无其它依据,也可用1/N作为初始权系数用。自适应滤波法有两个明显的优点:一是技术比较简洁,可依据猜测意图来选择权数的个数和学习常数,以掌握猜测。也可以由计

15、算机自动选定。二是它使用了全部历史数据来寻求最佳权系数,并随数据轨迹的变化而不断更新权数,从而不断改进猜测。由于自适应滤波法的猜测模型简洁,又可以在计算机上对数据进行处理,所以这种猜测方法应用较为广泛。七、趋势外推猜测方法趋势外推法是依据事物的历史和现时资料,寻求事物进展规律,从而推想出事物将来状况的一种比较常用的猜测方法。采用趋势外推法进行猜测,主要包括六个阶段:(a)选择应猜测的参数;(b)收集必要的数据;(C)采用数据拟合曲线;(d)趋势外推;(e)猜测说明;(f)争论猜测结果在进行决策中应用的可能性。趋势外推法常用的典型数学模型有:指数曲线、修正指数曲线、生长曲线、包络曲线等。6.1、

16、 指数曲线一般来说,技术的进步和生产的增长,在其未达饱和之前的新生时期是遵循指数曲线增长规律的,因此可以用指数曲线对进展中的事物进行猜测。指数曲线的数学模型为:y=yot其中系数y。和K值由历史数据采用回归方法求得。对该式取对数得Iny=Inyo+Kt,令Y=Iny,A=Iny0,则Y=A+Kt。可采用最小二乘法求得A和K。6.2、 修正指数曲线法采用指数曲线外推来进行猜测时,存在着猜测值随着时间的推移会无限增大的状况。这是不符合客观规律的。由于任何事物的进展都是有肯定限度的。例如某种畅销产品,在其占有市场的初期是呈指数曲线增长的,但随着产品销售量的增加,产品总量接近于社会饱和量时。这时的猜测

17、模型应改用修正指数曲线。在此数学模型中有三个参数a,b,K要用历史数据来确定。修正指数曲线用于描述这样一类现象:(1)、初期增长快速,随后增长率渐渐降低。(2)、当K0ta0,0b0,即力K当K值可预先确定时,采纳最小二乘法确定模型中的参数。而当K值不能预先确定时,应采纳三和法。把时间序列的n个观看值等分为三部分,每部分有m期,即m=3n第一部分:yi,丫2,?,Ym;其次部分:ym+l,Ym+2,?,Y2m;第三部分:y2m+l,y2m+2,?,Y3m;则:是否适应修正指数曲线?检验方法是看给定数据的逐期增长量的比率是否接近某一常数b。即yt+I-Yt1bYt-Yt-I7. 3ConIPer

18、tZ曲线曲线的一般形式ConIPertZ曲线用于描述这样一类现象:初期增长缓慢,以后渐渐加快。当达到肯定程度后,增长率又渐渐下降。参数估量方法如下:对上式取对数得:记忆=Inj,K=InK,=Ina则只=KM/仿照修正指数曲线的三和法估量参数,令其中y,=ln%则系数为是否适应ConIPertZ曲线?检验方法是看给定数据的对数逐期增长量的比率是否接近某一常数blnyt+1-lnytb7.1、 InyLlny7.2、 1.OgiStiC曲线(生长曲线)生物的生长过程经受发生、进展到成熟三个阶段,在三个阶段生物的生长速度是不一样的,例如南瓜的重量增长速度,在第一阶段增长的较慢,在进展时期则突然加快

19、,而到了成熟期又趋减慢,形成一条S形曲线,这就是出名的LogiStiC曲线(生长曲线),许多事物,如技术和产品进展进程都有类似的进展过程,因此LogiStiC曲线在猜测中有相当广泛的应用。1.ogiStiC曲线的一般数学模型是式中y为猜测值,L为y的极限值,r为增长率常数,r01.ogiStiC曲线的一般形式为对上式做变换得y=K+abt仿照修正指数曲线的三和法估量参数,令m2m3mSl=X,yz,s2=X,yz,s3=Ey:/=1=nlr=2n+l则各个系数为:7. 5趋势线的选择趋势线的选择有以下几种方式。1 .由散点图选择趋势线。2 .由数据本身的取值规律选择趋势线。3 .比较猜测标准误

20、差大小当有几种趋势线可供选择时,应选择S最小的趋势线。八、平稳时间序列模型这里的平稳是指宽平稳,其特性是序列的统计特性不随时间的平移而变化,即均值和协方差不随时间的平移而变化。8.1、 一般自回归模型AR(n)假设时间序列Xt仅与Xt-IX-2?Xt-n有线性关系,而在Xt-LXt-2?Xt-n已知条件下,Xt与Xt-i无关,(i=n+l,n+2,7)oat是一个独立于Xt-LXt一2ZXt-n的白噪声序列,at-N(0,2)oXt=(PlXt-1+2t-2+?+(PnXt-n+at上式也可以表示为:3t=Xf(PIXt-L(P2%-2-?-Pnt-n可见AR(n)系统响应Xt具有n阶动态性。

21、AR(n)通过把Xt中依赖于-1、Xt-2、t-11的部分消退掉之后,使得具有n阶动态性的序列X喉化为独立的序列曲。因此,AR(n)拟合模型的过程也就是使相关序列独立化的过程。8.2、 移动平均模型MA(m)AR(n)系统的特征是系统在t时刻的响应Xt仅与其以前时刻的响应Xt-LXt-2?Xt-n有关,而与其以前时刻进入系统的扰动无关。假如一个系统在t时刻的响应tX,与其以前时刻的响应Xt-LXt-2?Xt-n无关,而与其以前时刻进入系统的扰动讥-1A_2,?冏一m存在着肯定的相关关系,那么,这一类系统为系统MA(m)Xt=at-3l-1-023t-2-?nat-m8.3、 自回归移动平均模型

22、一个系统,假如它在时刻t的响应Xt,不仅与其以前时刻的自身值有关,而且还与其以前时刻进入系统的扰动存在肯定的依存关系,那么,这个系统就是自回归移动平均系统。ARMA(n,m)模型为Xt-(PlXt-L2t-2(PnXt-n=at-lat-l-2at-2一?一nat-m对于平稳系统来说,由于AR(n)、MA(m)、ARMA(n,m)模型都是ARMA(n,n-1)模型的特例,我们以ARMA(n,n-1)模型为一般形式来建立时序模型。九、ARMA模型的特征在时间序列的时域分析中,线性差分方程是极为有效的工具。事实上,任何一个ARMA模型都是一个线性差分方程。9.1、 AR(I)系统的格林函数格林函数

23、就是描述系统记忆扰动程度的函数。AR(I)模型为:Xt-n=at设Xt-=y(t),则有y(t+l)-1y(t)=at明显这是一个一阶非齐次差分方程,依次递推下去得:8Xt=2(PjatTj=上式就是格林函数的解。方程解的系数函数P客观地描述了该系统的动态性,故这个系统函数就叫做记忆函数,也叫格林函数。不妨另Gj=j明显Go=J=l0定义后移算子B,BXt=Xt,B2Xt=Xt_2,?,这样AR(I)可写成(1-B)Xt=at解为:8t=j=由于格林函数就是差分方程解的系数函数,格林函数的意义可概括如下:(1) Gj是前j个时间单位以前进入系统的扰动at_j对系统现在行为(响应)影响的权数。(

24、2) Gj客观地刻画了系统动态响应衰减的快慢程度。(3)对于一个平稳系统来说,在某一时刻由于受到进入系统的扰动曲的作用,离开其平衡位置(即平均数一零),Gj描述系统回到平衡位置的速度,6的值较小,速度较快;(Pl的值较大,回复的速度就较慢。9.2、 ARMA(2,1)系统的格林函数1、 2.1、ARMA(2,1)系统的格林函数的隐式ARMA(2,1)模型是一个二阶非齐次差分方程它的解为:若采纳B算子同时我们也可以得到:9、 2.2.ARMA(2,1)系统的格林函数的显式ARMA(2,1)模型是一个二阶非齐次差分方程该齐次方程得到的特征方程为:其特征根为:该齐次方程的通解为:系数CLC2也可以求

25、得,最终得到结果为:9.3、 逆函数和可逆性前面的格林函数,把Xt表示为过去at对Xt的影响,或者说系统对过去为的记忆性,也就是用一个MA模型来靠近Xt的行为。平稳序列Xt的这种表达形式称为Xt的“传递形式”。同样我们也可以用过去的Xt的一个线性组合来靠近系统现在时刻的行为。即8X=/-1+2X-2+z+at7=1我们把这种表达形式称为Xt的“逆转形式”。其中的系数函数Ij(Io=I)称为逆函数,可见它是一个无穷阶的自回归模型。一个过程是否具有逆转形式,也就是说逆函数是否存在的性质,通常称为过程是否具有可逆性,假如一个过程可以用一个无限阶的自回归模型靠近,即逆函数存在,我们就称该过程具有可逆性,否则,就是不行逆的。对于AR模型有可见,所谓可逆性,是指移动平均模型可以用AR模型表示。MA(I)模型:那么:即可见,Ij=-,明显,只有Vl时,才有j8,IjT,故MA(I)的可逆性条件为1IVl十、时间序列建模的基本步骤

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号