纯电动车动力系统.ppt

上传人:sccc 文档编号:5882451 上传时间:2023-08-29 格式:PPT 页数:47 大小:3.52MB
返回 下载 相关 举报
纯电动车动力系统.ppt_第1页
第1页 / 共47页
纯电动车动力系统.ppt_第2页
第2页 / 共47页
纯电动车动力系统.ppt_第3页
第3页 / 共47页
纯电动车动力系统.ppt_第4页
第4页 / 共47页
纯电动车动力系统.ppt_第5页
第5页 / 共47页
点击查看更多>>
资源描述

《纯电动车动力系统.ppt》由会员分享,可在线阅读,更多相关《纯电动车动力系统.ppt(47页珍藏版)》请在三一办公上搜索。

1、纯电动车动力系统,李哲清华大学汽车工程系发动机控制课题组2006.12,纯电动概述 纯电动动力系统组成3 动力系统的不同布置方法 电机 5 电池 电池的反应式和基本类型比较 三类主要实验,放电特性 与充电方法 BMS的任务 SOC估计方法 单体差异 安全性管理,提纲,概述,发展纯电动车的原因 环境 资源 政策 市场需求,据国务院发展研究中心预测,从2007年我国电力将开始盈余。微型电动汽车在夜间充电有利于我国电力结构优化,假定我国2020年电动汽车、微型电动汽车、电动自行车保有量分别达到50万、500万和2亿辆,以三类电动车年行使里程2万公里、1万公里和5000公里为例计算,夜间充电将为电网提

2、供总装机容量近7%的蓄能设备,为电力产业发展节约投资成本约1000亿元。,到2008年,北京地区的机动车排放将实行相当于欧洲号的标准。北京奥组委在北京奥运行动规划科技奥运建设专项规划中,将电动汽车开发、示范及产业化研究、动力锂离子电池及关键材料研究列入重点任务。,纯电动车动力系统结构简图,动力系统组成:电池及其管理系统电机及其管理系统辅助子系统,纯电动动力系统组成,动力系统的不同布置方法,电机,电磁场基本原理磁通、磁场强度、磁感应强度、磁导率电&磁:电动势E 磁通势F=NI电流 I 磁通 电流密度I/S 磁感应强度B电阻R=L/rs 磁阻 Rm=L/SI=E/R=E/(L/rs)=F/Rm=N

3、I/(L/S)磁场相互作用两个空间磁场,产生相互作用力,使得磁力线方向趋于一致。(指南针)磁力线总是喜欢从磁阻小得地方通过。(吸铁),电机原理电机原理:在空间内产生定子磁场和转子磁场。磁场相互作用产生扭矩和感生电动势。通过保持两磁场强度和相对夹角控制扭矩。电动机(电能机械能)当扭矩方向与旋转方向相同时输出机械能。此时感生电动势方向与电流同相,消耗电能。发电机(机械能电能)当扭矩方向与旋转方向相反时消耗机械能。此时感生电动势方向与电流反相,产生电能。,电机的数量和布置,选装几个电机?使用轮毂电机吗?电机选择什么类型?直流永磁无刷?,四轮单独控制,减少打滑等附着制动能量回收重量 电机的效率曲线轮毂

4、电机线控,体积,空间布置成本,浙江雄霸 800W直流永磁刷 单个重量约8Kg,1 直流电机如传统汽车用启动电机直流电机(通过直流电直接驱动的电机)定子磁场空间固定:通过直流电或永磁体产生转子磁场空间固定:通过电刷转子线圈产生两空间旋转磁场,当方向夹角90度时,产生最大作用扭矩。,电机分类,2 交流同步电机交流同步电机(转子转速与磁场转速相同)定子磁场空间旋转:通过交流电定子线圈产生转子磁场空间旋转:通过电刷转子线圈或永磁体产生,电机分类,励磁同步发电机(APU所用发电机)转子通过励磁机励磁(无刷直流励磁),定子感生交流电,永磁同步电机(ISG广泛采用)转子永磁体,定子线圈,无电刷,3 直流磁阻

5、电机磁阻同步电机(多用于步进电机)定子磁场空间旋转:通过直流电定子线圈产生转子磁场空间旋转:无转子磁场,电机分类,4 交流异步电机交流异步电机(转子转速小于磁场转速)定子磁场空间旋转:通过交流电定子线圈产生转子磁场空间旋转:通过金属条(鼠笼)感应产生,电机分类,永磁同步电机,永磁同步电机分类永磁同步(PMSM)转子永磁体形成的空间磁场强度沿周向呈正弦波分布。随转子旋转,定子线圈感生反电动势(bemf)为正弦波。为产生平稳扭矩,定子电流随转角也应为正弦波。,永磁同步电机分类交流无刷(BDCM)转子永磁体形成梯形空间磁场随转子旋转,在定子线圈感生反电动势(bemf)为梯形波为产生平稳扭矩,定子电流

6、也应控制为梯形波。但不可能产生完全平稳扭矩输出(只有当bemf为理想矩形波时),永磁同步电机,电机损耗铜损(电损)定子线圈为铜导线,铜损是指由于导线内阻R引起的损耗电损随定子电流幅值增大而增大。铁损(磁损)定子导磁材料为铁片,铁损是指由于磁路漏磁Rc引起的损耗。铁损随磁通和转速增大而增大。即随定子电压幅值增大而增大。,永磁同步电机,电池,电池电动汽车产业化发展的瓶颈之一,常见蓄电池的反应式,动力电池体系发展现状比较,蓄电池主要实验,性能实验测试变温度/DOD/充放电速率下的 时间电压 或 时间SOC 等曲线,了解电池的本身特性。随车实验记录不同转速/扭矩下的电池电压/电流/温度/SOC,优化电

7、池的管理策略,不仅用于纯电动车,还用于混合动力车(结合混合动力车辆的构型、能量分配策略和控制算法)。极限实验在刺穿/热失稳等极限条件下,评估电池的安全性。,电池性能实验:,充电倍率对电压与温度曲线影响,不同温度下的充电电压曲线,不同倍率充电时的压力变化,放电倍率对电池容量的影响,温度对电池可用容量的影响,隔膜种类对电池荷电保持特性的影响,蓄电池的放电特性曲线,电池的端电压在不同的放电率下(C)与放电时间的关系曲线:放电率越小,曲线越偏上80Ah 镍氢电池,如:100Ah额定容量的蓄电池:若c/5速率放电,20A,5h放电完毕,则c/10速率放电,即10A放电,则放电时间超过10h;则以1c速率

8、放电时,即100A放电,则放电时间小于1h。,蓄电池的可用容量随着放电率的上升而有所下降,Optima55Ah Yellowtop Pd-Acid 12V60A恒流放电,OUR DATA,蓄电池的可用容量随放电率的上升而下降,基于稳态开路电压的SOC估计方法:t=0时 OCV=12.993V SOC=100%t=finish OCV=11.895V SOC=44.75%,在SOC=44.75%时,端电压就下降到了危险的6.4V,S1:C/6恒流充电直到达到冒气电压(2.4v),切断充电电流,使得端电压稍微下降到2.2v。S2:75S1电流充电,直到达到冒气电压,切断充电电流,使得端电压稍微下降

9、到2.2v。S3:50S1电流充电,直到达到冒气电压,切断充电电流,使得端电压稍微下降到2.2v。S4:25S1电流充电,直到电池电压在15min内不再上升为止。S5:进入脉冲均衡充电过程。当S4后电压下降到2.13v时,开始这一过程,一直持续到电池电压在15min内不再上升为止。S6,S7:重复S5,以保证所有的单体都被充满。S8:涓流充电,以补偿自放电的损失。只要开路电压低于2.13v时,就开始这一过程,使用c/100的电流或者脉冲电流,一直持续到电池电压在5min内不再上升为止。,蓄电池的充电特性铅酸电池的非车载多步充电法s1s8,电池性能模型研究现状,等效电路模型,电化学模型,神经网络

10、模型,电池管理系统(Battery Management System,本文简称为BMS)是电池组热管理技术和SOC估计技术的应用平台。BMS对于电池组的安全、优化使用和整车能量管理策略的执行都是必需的。所有的现代电动汽车都安装有BMS。电池管理系统的功能主要包括数据采集、数据显示、状态估计、热管理、数据通讯、安全管理、能量管理和故障诊断。,蓄电池监测和管理系统,1 BMS的主要任务,2 SOC估计,理论SOC计算方法:(1)理论上:SOC=Cr/CtCr:电池在恒流I放电时在计算时刻的剩余容量;Ct:电池在恒流I放电时在计算时刻的总容量;,而Ct与I的关系如下计算:,I1:最高放电电流I2:

11、最低放电电流t1:与I1对应的放电时间t2:与I2对应的放电时间,由于电流、温度、自放电、老化等因素对SOC的非线性影响使得在线准确估计电池组的SOC具有很大难度。电动汽车动力电池SOC估计方法主要有放电试验法、安时计量法、内阻法、开路电压法、负载电压法、神经网络法和卡尔曼滤波法。(1)放电试验法放电试验法是最可靠的SOC估计方法,它采用标准电流对电池进行恒流放电,当达到放电终止条件时,放电电流与时间的乘积即为电池放电前的剩余电量。放电试验法有两个显著缺点:电池进行的工作要被迫中断;需要大量时间。所以放电试验法不适合电动汽车上实时应用。,(2)一些实用性方法,(2)内阻法电池内阻R有交流内阻(

12、Internal Impedance,也称交流阻抗)和直流内阻(Internal Resistance)之分,它们都与SOC密切相关。交流阻抗表示电池对交流电输入的抗拒能力,交流阻抗受温度影响大,且关于应该在电池平衡状态还是在充放电过程中进行交流阻抗测量存在争议,所以很少应用。直流内阻表示电池对直流电输入的抗拒能力,等于在同一很短时间段内电池电压变化量与电流变化量的比值。直流内阻法的缺点是难于在电动汽车上实时测量,也很少应用。,(3)开路电压法电池的开路电压OCV(Open Circuit Voltage)与SOC存在单调变化的一一映射关系。在使用开路电压法前须通过试验得到OCV与SOC的对应

13、关系。开路电压法的显著缺点是需要将电池长时静置以达到电压平衡,电池从工作状态恢复到平衡状态一般需要几个甚至十几个小时,静置时间如何确定也是一个问题。所以该方法单独使用只适于电动汽车驻车状态。根据作者的研究经验,即使对于处于平衡状态的镍氢电池使用开路电压法,误差水平也可能大于20%。,电池开路电压随SOC的变化趋势(80Ah),(4)负载电压法 负载电压法的原理可由式 说明:UL为负载电压,IL为负载电流。以不同电流对电池组进行恒流充电,将得到一组以电流标记的互不交叉的SOC与充电电压的关系曲线(如图下左);以不同电流对电池组进行恒流放电,将得到一组以电流标记的互不交叉的SOC与放电电压的关系曲

14、线(如图下中);基于这两组曲线可以得到电流IL、电压UL和SOC的三维对应关系(如图下右),该对应关系就是负载电压法应用的基础。负载电压法的优点是能在电动汽车上实时应用,对于恒流放电的电池组有较好的精度。但电动汽车上剧烈波动的电池组电压给负载电压法应用带来困难,误差较大。所以负载电压法很少应用到实车上,但常用来作为电池充放电截止的判据。电流为零时的负载电压法即为开路电压法。,(5)安时计量法如果电池在充放电起始时刻t0的SOC为SOC0,那么t时刻的SOC由式计算,即为安时计量法的原理,其中CN为额定容量,Eta为库仑效率。由于安时计量法原理简单,工作稳定,是目前电动汽车最常用的SOC估计方法

15、。清华大学计算机系设计的电池管理系统、丰田公司Prius、本田公司的电动汽车EV Plus,通用大宇的电动汽车DEV5使用的都是安时计量法,FCB也使用安时计量法。安时计量法有两个主要缺点:方法本身不能估计初始SOC;库仑效率难于准确测量,不准确的库仑效率对SOC误差有累积效应。解决电池初始SOC的问题,目前通常引入开路电压法或负载电压法来辅助解决。对库仑效率问题主要是基于大量实验数据进行修正。安时计量法能够基本满足电动汽车电池组SOC估计的需要,但是精度还需提高。FCB对SOC估计精度要求为8%,安时计量法无法在所有电池使用环境都达到该精度。,(6)神经网络法神经网络法原理如图所示神经网络法

16、适用于各种电池,缺点是需要大量的试验数据进行训练,估计误差受训练数据和训练方法的影响很大,适用范围受训练数据限制,而且在电池管理系统中较难实现。大量文献使用神经网络估计处于恒流、恒负载充放电状态的电池的SOC。实际电动汽车动力电池的工作状态多样且电流剧烈变化,适合电动汽车工况的神经网络SOC估计方法还在研究中。,(7)卡尔曼滤波法卡尔曼滤波理论的核心思想是对系统的状态做出最小方差意义上的最优估计。如式所示,卡尔曼滤波应用于电池SOC估计,电池被电池性能模型和安时计量法描述为离散的系统,SOC是系统的一个状态,SOCk和SOCk+1分别表示两个临近的具体SOC值。卡尔曼滤波法估计SOC的算法是一

17、套包括SOC估计值和反映估计误差的协方差矩阵的递归方程。与其他方法相比,卡尔曼滤波法的优点是对初始SOC误差不敏感和更适于电流波动剧烈的电动汽车应用环境,缺点是对电池性能模型精度及电池管理系统计算能力要求高。目前,丰田公司、本田公司和福特公司生产的混合动力汽车使用的电池组SOC估计方法都是电流(安时计量法)结合电压(开路电压法和负载电压法)的估计方法,精度约为10%20%,电池SOC使用范围为0.50.8。各个公司都在不断对自己的电池组SOC估计技术进行改进,因为这是各个公司的核心技术,在公开文献中,各公司从未对技术细节进行介绍。香港大学、德国乌尔姆大学、德国亚琛工业大学都正在进行电池SOC估

18、计方法的研究。在上面介绍的多种SOC估计方法中,神经网络法和卡尔曼滤波法是比较有希望的新方法。,电池SOC估计方法总结,3 控制单体差异的方法,1 均衡充电法:采用脉冲电流,以期将所有电流都充满,只能在充电过程中发挥作用。2 分流电路法:一旦本单体被充满,分流电路就会分流充电电流,只能在充电过程中发挥作用。3 开关电容平衡器法:通过电容的不同连接,实现不同单体间的电压平衡,可以随时使用。,开关电容平衡器法图示:,4 电池在电动汽车上应用时的其他安全性问题,反应安全性,环境安全性,反应安全性,单体电池内外温度对比,电池箱体散热效果,热管理相关研究,单体电池内外温度 模块电池散热研究 电池箱体散热研究(流场及温度场分布)及优化设计,电池箱体实物,串行通风和并行通风,电池箱体设计和散热优化,环境安全性,在非运行状态时,通过降压装置将电池箱体内的高电压分解,避免高压隐患。在整车安装时,用专用绝缘子将电池箱体与整车底梁绝缘,提高箱体电压安全性。,高压及绝缘,碰撞安全,在电池箱体侧面加装碰撞传感器,在遭遇碰撞事故时安全系统启动,确保电池箱体及电池的安全。,电池箱加强筋,电池模块,电池加固压板,电池箱加强筋,电池加固压板,箱体内电池固定示意图,车用箱体内电池固定示意图,电池模块,抗振安全性,跌落,挤压,针刺,谢谢!,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号