分类计数原理和分步计数原理.ppt

上传人:sccc 文档编号:5907197 上传时间:2023-09-02 格式:PPT 页数:37 大小:874.54KB
返回 下载 相关 举报
分类计数原理和分步计数原理.ppt_第1页
第1页 / 共37页
分类计数原理和分步计数原理.ppt_第2页
第2页 / 共37页
分类计数原理和分步计数原理.ppt_第3页
第3页 / 共37页
分类计数原理和分步计数原理.ppt_第4页
第4页 / 共37页
分类计数原理和分步计数原理.ppt_第5页
第5页 / 共37页
点击查看更多>>
资源描述

《分类计数原理和分步计数原理.ppt》由会员分享,可在线阅读,更多相关《分类计数原理和分步计数原理.ppt(37页珍藏版)》请在三一办公上搜索。

1、分类计数原理和分步计数原理(1),江苏省兴化楚水实验学校 徐信生 cs_;cs_,2023年9月2日星期W,一、问题引入:,问题1 从甲地到乙地,可以乘火车,也可以乘汽车,一天中,火车有3班,汽车有2班,那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?,因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有 3+2=5种不同的走法.,问题2 一个书架共有三层,第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.从书架上任取1本书,有多少种不同的取法?,分析:分三类:第一类:从第1层取,有4种方法;第二类:从第2层取,

2、有3种方法;第三类:从第3层取,有2种方法.所以从书架上任取1本书共有4+3+2=9 种不同的取法.,一般地,有如下原理:,分类计数原理 完成一件事,有n类办法,在第1类办法中有 种不同方法,在第2类办法中有 种不同方法,在第n类办法中有 种不同方法,那么完成这件事共有种不同的方法.,问题3 从甲地到乙地,要从甲地选乘火车到丙地,再于次日从丙地选乘汽车到乙地,一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法?,具体走法:,从甲地乘火车1到丙地再于次日乘汽车1到乙地;,从甲地乘火车2到丙地再于次日乘汽车1到乙地;,从甲地乘火车3到丙地再于次日乘汽车1到乙地;,从甲地乘

3、火车1到丙地再于次日乘汽车2到乙地;,从甲地乘火车2到丙地再于次日乘汽车2到乙地;,从甲地乘火车3到丙地再于次日乘汽车2到乙地.,问题4 一个书架共有三层,第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.从书架的第1、2、3层各取1本书,有多少种不同的取法?,分析:分三步:第一步:从第1层取,有4种方法;第二步:从第2层取,有3种方法;第三步:从第3层取,有2种方法。所以从书架的第1、2、3层各取1本书,共有43 2=24 种不同的取法,一般地,有如下原理:,分步计数原理 完成一件事,需要分n个步骤,做第1步有 种不同方法,做第2步有 种不同方法,做第n步

4、有 种不同方法,那么完成这件事共有种不同的方法.,二、知识新授:,分类计数原理 完成一件事,有n类办法,在第1类办法中有 种不同方法,在第2类办法中有 种不同方法,在第n类办法中有 种不同方法,那么完成这件事共有:种不同的方法.,对于分类计数原理,我们应注意以下几点:(1)从分类计数原理中可以看出,各类之间相互独立,都能完成这件事,且各类方法数相加,所以分类计数原理又称加法原理;(2)分类时,首先要根据问题的特点确定一个分类的标准,然后在确定的分类标准下进行分类;(3)完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法都是不同的方法.,分步计数原理 完成一件事,需要分n个步骤

5、,做第1步有 种不同方法,做第2步有 种不同方法,做第n步有 种不同方法,那么完成这件事共有种不同的方法.,对于分步计数原理,我们也应注意以下几点:(1)分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤完成了,这件事才算完成,且各步骤方法数相乘,所以分步计数原理又称乘法原理;(2)分步时首先要根据问题的特点确定一个分步的标准;(3)分步时还要注意满足完成一件事必须并且只需连续完成n个步骤后这件事才算完成.,分类计数原理与分步计数原理有什么不同?,相同点:分类计数原理与分步计数原理都是涉及完成一件事的不同方法的种数的问题.,不同点:分类计数原理与“分类”有关,各种方法相互独立,用其中任

6、何一种方法都可以完成这件事,用加法计算;分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成,用乘法计算.,三、例题讲解:,例1 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.从书架上任取1本书,有多少种不同的取法?从书架的第1、2、3层各取1本书,有多少种不同的取法?,解:从从书架上任取1本书,有3类办法:第1类办法是从第1层取1本计算机书,有4种方法;第2类办法是从第2层取1本文艺书,有3种方法;第3类办法是从第3层取1本体育书,有2种方法.根据分类计数原理,不同的取法种数是,从书架的第1、2、3层各取1本书,可以

7、分3个步骤:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本文艺书,有3种方法;第3步从第3层取1本体育书,有2种方法.根据分步计数原理,不同的取法种数是,点评:要正确分类,合理分步分类用加法,分步用乘法,例2 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数字的号码?,解:完成拨号需分4个步骤:第一步从第1个拨号盘上拨一个数,共有10种拨法;第二步从第2个拨号盘上拨一个数,共有10种拨法;第三、第四步同第一、第二步也各有10种拨法,由分步计数原理可知共有,拨号方法.,思考:,如果一个密码锁有5个、8个、10个拨号盘,可分别组成多少个密

8、码数字?,例3、如图,该电路,从A到B共有多少条不同的线路可通电?,A,B,解:从总体上看由A到B的通电线路可分三类 第一类,m1=3 条;第二类,m2=1 条;第三类,m3=22=4 条;所以,根据加法原理,从A到B共有 N=3+1+4=8 条不同的线路可通电.,四、课堂练习:,1、课本 P82 练习No.1、2、3、4;2、某中学的一栋5层教学楼共有3处楼梯,问从1楼到5楼共有多少种不同的走法?3、一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同,从两个口袋内任取一个小球,共有 种不同的取法.4、由1至5这5个数字可以组成 个没有重复数字的三位数.,9,60,拓

9、展性练习:,1、用1,5,9,13中任意一个数作分子,4,8,12,16中任意一个数作分母,可构造 个不同的真分数?2、从含3个元素的集合到含4个元素的集合的映射有 个.3、有不同的中文书7本,不同的英文书5本,不同的日文书4本,现要从中取不同文字的书两本,有 种不同的取法.,N=4+3+2+1=10.,10,N=444=64.,64,N=75+74+54=83.,83,五、课堂小结:,完成一件事有多少种不同的方法,先看完成这件事情的一种方法是怎样的,是要分几类来完成,还是可以分几步来完成,从而判断是用分类计数原理还是用分步计数原理也就不难了;有些较复杂的问题可能不是简单的“分类”或“分步”就

10、可以解决的,而要把两者结合起来考虑.,1)、分类计数原理(加法原理)中的“分类”要全面,不能遗漏;但也不能重复、交叉;“类”与“类”之间是并列的、互斥的、独立的,也就是说,完成一件事,每次只能选择其中的一类办法中的某一种方法.,3)、在运用“分类计数原理、分步计数原理”处理具体应用题时,除要弄清是“分类”还是“分步”外,还要搞清楚“分类”或“分步”的具体标准.在“分类”或“分步”过程中,标准必须一致,才能保证不重复、不遗漏.,2)、分步计数原理(乘法原理)中的“分步”程序要正确.“步”与“步”之间是连续的,不间断的,缺一不可;但也不能重复、交叉;若完成某件事情需n步,则必须且只需依次完成这n个步骤后,这件事情才算完成.,几个注意点:,六、作业布置:,课本 P83 习题10.1 No.1、2、3、4.,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号