《工程数学-微分方程.ppt》由会员分享,可在线阅读,更多相关《工程数学-微分方程.ppt(27页珍藏版)》请在三一办公上搜索。
1、1,工程數學-微分方程,授課者:丁建均,Differential Equations(DE),教學網頁:http:/(請上課前來這個網站將講義印好)歡迎大家來修課!,2,授課者:丁建均Office:明達館723室,TEL:33669652 Office hour:星期三下午 1:005:00個人網頁:E-mail:,上課時間:星期三 第 3,4 節(AM 10:2012:10)星期五 第 2 節(AM 9:1010:00)上課地點:電二143課本:Differential Equations-with Boundary-Value Problem,7th edition,Dennis G.Zi
2、ll and Michael R.Cullen評分方式:四次作業一次小考 10%,期中考 45%,期末考 45%,3,注意事項:請上課前,來這個網頁,將上課資料印好。(2)請各位同學踴躍出席。(3)作業不可以抄襲。作業若寫錯但有用心寫仍可以有40%90%的分數,但抄襲或借人抄襲不給分。(4)我週一至週四下午都在辦公室,有什麼問題,歡迎同學們來找我,4,上課日期,5,課程大綱,Introduction(Chap.1),First Order DE,Higher Order DE,解法(Chap.2),應用(Chap.3),解法(Chap.4),應用(Chap.5),多項式解法(Chap.6),矩
3、陣解法(Chap.8),Transforms,Partial DE(Chap.12),Laplace Transform(Chap.7),Fourier Series(Chap.11),Fourier Transform(Chap.14),6,Chapter 1 Introduction to Differential Equations,1.1 Definitions and Terminology(術語),Differential Equation(DE):any equation containing derivation(page 2,definition 1.1)x:independ
4、ent variable 自變數 y(x):dependent variable 應變數,7,In the text book f(x)is often simplified as f notations of differentiation,.Leibniz notation,.prime notation,.dot notation,.subscript notation,8,(2)Ordinary Differential Equation(ODE):differentiation with respect to one independent variable,(3)Partial D
5、ifferential Equation(PDE):differentiation with respect to two or more independent variables,9,(4)Order of a Differentiation Equation:the order of the highest derivative in the equation,7th order,2nd order,10,(5)Linear Differentiation Equation:,All the coefficient terms are independent of y.,Property
6、 of linear differentiation equations:If and y3=by1+cy2,then,11,(6)Non-Linear Differentiation Equation,12,(7)Explicit Solution(page 6)The solution is expressed as y=(x)(8)Implicit Solution(page 7)Example:,Solution:(implicit solution)or(explicit solution),13,1.2 Initial Value Problem(IVP),A differenti
7、ation equation always has more than one solution.for,y=x,y=x+1,y=x+2 are all the solutions of the above differentiation equation.General form of the solution:y=x+c,where c is any constant.The initial value(未必在 x=0)is helpful for obtain the unique solution.and y(0)=2 y=x+2 and y(2)=3.5 y=x+1.5,14,The
8、 kth order differential equation usually requires k initial conditions(or k boundary conditions)to obtain the unique solution.solution:y=x2/2+bx+c,b and c can be any constant y(1)=2 and y(2)=3 y(0)=1 and y(0)=5 y(0)=1 and y(3)=2For the kth order differential equation,the initial conditions can be 0t
9、h(k1)th derivatives at some points.,(boundary conditions,在不同點),(boundary conditions,在不同點),(initial conditions),15,1.3 Differential Equations as Mathematical Model,Physical meaning of differentiation:the variation at certain time or certain place,A:population人口增加量和人口呈正比,Example 1:,16,T:熱開水溫度,Tm:環境溫度t
10、:時間,Example 2:,17,大一微積分所學的:,的解,問題:,(1)若等號兩邊都出現 dependent variable(如 pages 15,16 的例子),(2)若order of DE 大於 1,例如:,18,Review dependent variable and independent variable DE PDE and ODE Order of DE linear DE and nonlinear DE explicit solution and implicit solution initial value IVP,19,Chapter 2 First Order
11、 Differential Equation,2-1 Solution Curves without a Solution,Instead of using analytic methods,the DE can be solved by graphs(圖解),slopes and the field directions:,x-axis,y-axis,(x0,y0),the slope is f(x0,y0),20,Example 1 dy/dx=0.2xy,資料來源:Fig.2-1-3(a)of“Differential Equations-with Boundary-Value Prob
12、lem”,7th ed.,Dennis G.Zill and Michael R.Cullen.,21,資料來源:Fig.2-1-4 of“Differential Equations-with Boundary-Value Problem”,7th ed.,Dennis G.Zill and Michael R.Cullen.,Example 2 dy/dx=sin(y),y(0)=3/2 With initial conditions,one curve can be obtained,22,Advantage:It can solve some 1st order DEs that ca
13、nnot be solved by mathematics.Disadvantage:It can only be used for the case of the 1st order DE.It requires a lot of time,23,Section 2-6 A Numerical Method,Another way to solve the DE without analytic methods independent variable x x0,x1,x2,Find the solution of Since approximation,sampling(取樣),前一點的值
14、,取樣間格,24,Example:dy(x)/dx=0.2xy y(xn+1)=y(xn)+0.2xn y(xn)*(xn+1 xn).dy/dx=sin(x)y(xn+1)=y(xn)+sin(xn)*(xn+1 xn).,後頁為 dy/dx=sin(x),y(0)=1,(a)xn+1 xn=0.01,(b)xn+1 xn=0.1,(c)xn+1 xn=1,(d)xn+1 xn=0.1,dy/dx=10sin(10 x)的例子,Constraint for obtaining accurate results:(1)small sampling interval(2)small variat
15、ion of f(x,y),25,(a),(b),(c),(d),26,Advantages-can be used for solving a complicated DE(not constrain for the 1st order case)-suitable for computer simulation Disadvantages-more time for computation-numerical error(數值方法的課程對此有詳細探討),27,Exercises for Practicing(not homework,but are encouraged to practice)1-1:1,13,19,23,331-2:3,13,21,331-3:2,7,282-1:1,13,20,25,332-6:1,3,