空间向量的正交分解及其坐标表.ppt

上传人:小飞机 文档编号:6011492 上传时间:2023-09-14 格式:PPT 页数:18 大小:787.50KB
返回 下载 相关 举报
空间向量的正交分解及其坐标表.ppt_第1页
第1页 / 共18页
空间向量的正交分解及其坐标表.ppt_第2页
第2页 / 共18页
空间向量的正交分解及其坐标表.ppt_第3页
第3页 / 共18页
空间向量的正交分解及其坐标表.ppt_第4页
第4页 / 共18页
空间向量的正交分解及其坐标表.ppt_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《空间向量的正交分解及其坐标表.ppt》由会员分享,可在线阅读,更多相关《空间向量的正交分解及其坐标表.ppt(18页珍藏版)》请在三一办公上搜索。

1、,空间向量的正交分解及其坐标表示,例1 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。,已知:如图,PO,PA分别是平面的垂线,斜线,AO是PA在平面内的射影,,A,A,已知:如图,PO,PA分别是平面的垂线,斜线,AO是PA在平面内的射影,,分析:同样可用向量,证明思路几乎一样,只不过其中的加法运算用减法运算来分析.,例2 如图,m,n是平面内的两条相交直线。如果lm,ln,求证:l,空间向量的正交分 解及其坐标表示,共线向量定理:,复习:,共面向量定理:,平面向量基本定理:,平面向量的正交分解及坐标表示,问题:,我们知道,平面内的任意一个向量 都可以用两个

2、不共线的向量 来表示(平面向量基本定理)。对于空间任意一个向量,有没有类似的结论呢?,由此可知,如果 是空间两两垂直的向量,那么,对空间任一向量,存在一个有序实数组 x,y,z使得 我们称 为向量 在 上的分向量。,探究:在空间中,如果用任意三个不共面向量 代替两两垂直的向量,你能得出类似的 结论吗?,任意不共面的三个向量都可做为空间的一个基底。,空间向量基本定理:,如果三个向量 不共面,那么对空间任一向量,存在一个唯一的有序实数组x,y,z,使,都叫做基向量,(1)任意不共面的三个向量都可做为空间的一个基底。,特别提示:对于基底a,b,c,除了应知道a,b,c不共面,还应明确:,(2)由于可

3、视 为与任意一个非零向量共线,与任意两个非零向量共面,所以三个向量不共面,就隐含着它们都不是。,(3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关连的不同概念。,推论:设O、A、B、C是不共线的四点,则对空间任一点P,都存在唯一的有序实数组x,y,z,使 当且仅当x+y+z=1时,P、A、B、C四点共面。,一、空间直角坐标系,给定一个空间坐标系和向量,且设e1,e2,e3为坐标向量,由空间向量基本定理,存在唯一的有序实数组(x,y,z)使 p=xe1+ye2+ze3 有序数组(x,y,z)叫做p在空间直角坐标系O-xyz中的坐标,记作.P=(x,y,z),二、空间向量的

4、直角坐标系,x,y,z,O,e1,e2,e3,在空间直角坐标系O-xyz中,对空间任一点,A,对应一个向量OA,于是存在唯一的有序实数组x,y,z,使 OA=xe1+ye2+ze3,在单位正交基底e1,e2,e3中与向量OA对应的有序实数组(x,y,z),叫做点A在此空间直角坐标系中的坐标,记作A(x,y,z),其中x叫做点A的横坐标,y叫做点A的纵坐标,z叫做点A的竖坐标.,x,y,z,O,A(x,y,z),e1,e2,e3,练习:1、在空间坐标系o-xyz中,(分别是与x轴、y轴、z轴的正方向相同的单位向量)则 的坐标为,点B的坐标为。2、点M(2,-3,-4)在坐标平面xoy、xoz、yoz内的正投影的坐标分别为,关于原点的对称点为,关于轴的对称点为,,例题,已知空间四边形OABC,其对角线为OB,AC,M,N,分别是对边OA,BC的中点,点P,Q是线段MN三等分点,用基向量OA,OB,OC表示向量OP,OQ.,1、已知向量a,b,c是空间的一个基底求证:向量a+b,a-b,c能构成空间的一个基底,练习,练习2,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号