《2021初二数学知识点.doc》由会员分享,可在线阅读,更多相关《2021初二数学知识点.doc(13页珍藏版)》请在三一办公上搜索。
1、If you are proud, you should have extra steps in everything you do.勤学乐观天天向上(页眉可删)2021初二数学知识点 初二数学知识点1一、勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。2、勾股定理的逆定理如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。3、勾股数满足的三个正整数,称为勾股数。常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);(这些勾股数组的倍数仍是勾股数)。二、证
2、明1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。2、三角形内角和定理:三角形三个内角的和等于180度。(1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。(2)三角形的外角与它相邻的内角是互为补角。3、三角形的外角与它不相邻的内角关系(1)三角形的一个外角等于和它不相邻的两个内角的和。(2)三角形的一个外角大于任何一个和它不相邻的内角。4、证明一个命题是真命题的基本步骤(1)根据题意,画出图形。(2)根据条件、结论,结合图形,写出已知、求证。(3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:在一般情况下,分析的
3、过程不要求写出来。证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。三、数据的分析1、平均数一般地,对于n个数x1x2.xn,我们把(x1+x2+?+xn)叫做这n个数的算数平均数,简称平均数记为。在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。2、中位数与众数中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。一组数据中出现次数最多的那个数据叫做这组数据的众数。平均数、中位数和众数都是描述数据集中趋势的统计量。计算
4、平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。各个数据重复次数大致相等时,众数往往没有特别意义。3、从统计图分析数据的集中趋势4、数据的离散程度实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。数学上,数据的离散程度还可以用方差或标准差刻画。方差是各个数据与平均数差的平方的平均数。其中是x1,x2.xn平均数,s2是方差,而标准差就是方差
5、的算术平方根。一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。初二数学知识点2分式方程一、理解定义1、分式方程:含分式,并且分母中含未知数的方程分式方程。2、解分式方程的思路是:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。(2)解这个整式方程。(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。(4)写出原方程的根。“一化二解三检验四总结”3、增根:分式方程的增根必须满足两个条件:(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。4、分式方程的解法:(1)能化简的先化简(2)方程两边同乘以最简公分
6、母,化为整式方程;(3)解整式方程;(4)验根;注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。5、分式方程解实际问题步骤:审题设未知数列方程解方程检验写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。二、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。1、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这
7、条直线叫做对称轴。互相重合的点叫做对应点。2、轴对称图形与轴对称的区别与联系:(1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。(2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。3、轴对称的性质:(1)成轴对称的两个图形全等。(2)对称轴与连结“对应点的线段”垂直。(3)对应点到对称轴的距离相等。(4)对应点的连线互相平行。三、用坐标表示轴对称1、点(x,y)关于x轴对称的点的坐标为(x,-y);2、点(x,y)关于y轴对称的点的坐标为(-x,y);3、点(x,y
8、)关于原点对称的点的坐标为(-x,-y)。四、关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)初二数学知识点3一、轴对称图形1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称
9、的区别与联系4.轴对称的性质关于某直线对称的两个图形是全等形。如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。二、线段的垂直平分线1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1.在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐
10、标互为相反数,纵坐标相等.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1.等腰三角形的性质.等腰三角形的两个底角相等。(等边对等角).等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)五、(等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。2、等边三角形的判定:三个角都相等的三角形是等边三角形。有一个角是600的等腰三角形是等边三角形。3.在直角三角形中,如果一个锐角等于300,那么
11、它所对的直角边等于斜边的一半。、等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。推论2:等边三角形的各个角都相等,并且每个角都等于60。、等腰三角形的其他性质:(1)等腰直角三角形的两个底角相等且等于45(2)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。(3)等腰三角形的三边关系:设腰长为a,底边长为b,则(4)等腰三角形的三角关系:设顶角为顶角为A,底角为B、C,则A=1802B,B=C=、等腰三角形的判定等腰三角形的判定定理及推论:定
12、理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60的等腰三角形是等边三角形。推论3:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三角形中位线定理的作用:位置关系:可以证明两条直线平行。数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论2:三条中位线将原三角形分割成四个全等的三角形。结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论4:三角形一条中线和与它相交的中位线互相平分。结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。2021初二数学知识点