计算机基本理论及操作.ppt

上传人:小飞机 文档编号:6023536 上传时间:2023-09-15 格式:PPT 页数:38 大小:417KB
返回 下载 相关 举报
计算机基本理论及操作.ppt_第1页
第1页 / 共38页
计算机基本理论及操作.ppt_第2页
第2页 / 共38页
计算机基本理论及操作.ppt_第3页
第3页 / 共38页
计算机基本理论及操作.ppt_第4页
第4页 / 共38页
计算机基本理论及操作.ppt_第5页
第5页 / 共38页
点击查看更多>>
资源描述

《计算机基本理论及操作.ppt》由会员分享,可在线阅读,更多相关《计算机基本理论及操作.ppt(38页珍藏版)》请在三一办公上搜索。

1、计算机基本理论及操作,一.计算机的组成及工作原理 二.计算机的硬件系统及作用 三.计算机的软件系统及windows的使用 四.计算机故障诊断及基本维护 五.CMOS的使用 六.windows系统的安装 七.综合,一.计算机的组成及工作原理,1.计算机的系统组成,2.计算机的工作原理,二.计算机的硬件系统及作用,1.CPU,CPU是中央处理单元(Central Processing Unit)的缩写,它可以被简称做微处理器(Microprocessor),不过经常被人们直接称为处理器(processor)。CPU是计算机的核心,其重要性好比大脑对于人一样,因为它负责处理、运算计算机内部的所有数据

2、,而主板芯片组则更像是心脏,它控制着数据的交换。CPU的种类决定了操作系统和相应的软件。CPU主要由运算器、控制器、寄存器组和内部总线等构成,是PC的核心。cpu插座类型有socket7、slot1、socket370、socket478、LGA775 1)主频也叫时钟频率,单位是MHz(或GHz),用来表示CPU的运算、处理数据的速度。CPU的主频外频倍频系数。2)外频是CPU的基准频率,单位是MHz。CPU的外频决定着整块主板的运行速度。“前端总线”这个名称是由AMD在推出K7 CPU时提出的概念,但是一直以来都被大家误认为这个名词不过是外频的另一个名称。通常所说的外频指的是CPU与主板连

3、接的速度,这个概念是建立在数字脉冲信号震荡速度基础之上的,而前端总线的速度指的是数据传输的速度,由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽(总线频率数据位宽)8。3)倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高主频而得到高倍频的CPU就会出现明显的“瓶颈”效应CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。,4)前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一

4、条公式可以计算,即数据带宽(总线频率数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。前端总线的速度指的是CPU和北桥芯片间总线的速度,更实质性的表示了CPU和外界数据传输的速度。而外频的概念是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了PCI及其他总线的频率。之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium 4出现之前和刚出现Pentium 4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,

5、人们发现前端总线频率需要高于外频,因此采用了QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理类似于AGP的2X或者4X,它们使得前端总线的频率成为外频的2倍、4倍甚至更高,从此之后前端总线和外频的区别才开始被人们重视起来。“前端总线”这个名称是由AMD在推出K7 CPU时提出的概念.前端总线的英文名字是Front Side Bus,通常用FSB表示,是将CPU连接到北桥芯片的总线。计算机的前端总线频率是由CPU和北桥芯片共同决定的。选购主板和CPU时,要注意两者搭配问题,一般来说,如果CPU不超频,那么前端总线是由CPU决定的,如果主板不支持CPU所需

6、要的前端总线,系统就无法工作。也就是说,需要主板和CPU都支持某个前端总线,系统才能工作,只不过一个CPU默认的前端总线是唯一的,因此看一个系统的前端总线主要看CPU就可以。系统总线(BusSpeed)与前端总线(FSB、外频)的区别在于,前端总线(FSB、外频)的速度指的是CPU和北桥芯片间总线的速度。而系统总线(BusSpeed)的概念是建立在数位脉冲信号震荡速度基础之上的,也就是说,100MHz系统总线(BusSpeed)特指数位脉冲信号在每秒钟震荡一百万次,它更多的影响了PCI及其他总线的频率。之所以前端总线(FSB、外频)与系统总线(BusSpeed)这两个概念容易混淆,主要的原因是

7、在以前的很长一段时间里,前端总线(FSB、外频)与系统总线(BusSpeed)是相同速率,因此往往直接称系统总线(BusSpeed)为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率(外频、FSB)需要高于系统总线(BusSpeed),因此采用了QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理类似于AGP的2X或者4X,它们使得的前端总线(FSB、外频)频率成为系统总线(BusSpeed)的2倍、4倍甚至更高,从此之后系统总线(BusSpeed)和前端总线(FSB、外频)的区别才开始被人们重视起来。CPU厂商已经找到了增加CPU的F

8、SB有效速度的方法。只是在每个时钟周期中发送了更多的指令。所以CPU厂商已经有每个时钟周期发送两条指令的办法(AMD CPU),或甚至是每个时钟周期四条指令(Intel CPU),而不是每个时钟周期发送一条指令。那么在考虑CPU和看FSB速度的时候,必须认识到它不是真正地在那个速度下运行。Intel CPU是“四芯的”,也就是它们每个时钟周期发送4条指令。这意味着如果看到800MHz的FSB,潜在的FSB速度其实只有200MHz,但它每个时钟周期发送4条指令,所以达到了800MHz的有效速度。相同的逻辑也适用于AMD CPU,不过它们只是“二芯的”,意味着它们每个时钟周期只发送2条指令。所以在

9、AMD CPU上400MHz的FSB是由潜在的200MHz FSB每个时钟周期发送2条指令组成的。在CPU上提高或降低倍频比FSB容易得多了。这是因为倍频和FSB不同,它只影响CPU速度。改变FSB时,实际上是在改变每个单独的电脑部件与CPU通信的速度。这是在超频系统的所有其它部件了。这在其它不打算超频的部件被超得太高而无法工作时,可能带来各种各样的问题。不过一旦了解了超频是怎样发生的,就会懂得如何去防止这些问题了。,5)缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时

10、,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。L1Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32256KB。L2Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速

11、度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,以前家庭用CPU容量最大的是512KB,现在笔记本电脑中也可以达到2M,而服务器和工作站上用CPU的L2高速缓存更高,可以达到8M以上。L3Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显著的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数

12、据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。6)制造工艺的微米是指IC内电路与电路之间的距离。制造工艺的趋势是向密集度愈高的方向发展。密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。7)CPU的厂商 Intel公司 AMD公司 8)CPU的位和字长 位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是“0”或是“1”在CPU中都是 一“位”。字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位

13、的CPU就能在单位时间内处理字长为32位的二进制数据。字节和字长的区别:由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。字长的长度是不固定的,对于不同的CPU、字长的长度也不一样。8位的CPU一次只能处理一个字节,而32位的CPU一次就能处理4个字节,同理字长为64位的CPU一次可以处理8个字节。字节换算 1GB=1024M,1MB=1024KB,1KB=1024B,1B=1024bit9)CPU的工作电压:10)CPU及风扇的安装:安装CPU风扇时应在CPU上涂抹导热硅脂,2.主板,主板,又叫主机板(mainboard)、系统板(systemboard)或母板(mot

14、herboard);它安装在机箱内,是微机最基本的也是最重要的部件之一。主板一般为矩形电路板,上面安装了组成计算机的主要电路系统,一般有BIOS芯片、I/O控制芯片、键盘和面板控制开关接口、指示灯插接件、扩充插槽、主板及插卡的直流电源供电接插件等元件。1)芯片部分BIOS芯片:是一块方块状的存储器,里面存有与该主板搭配的基本输入输出系统程序。能够让主板识别各种硬件,还可以设置引导系统的设备,调整CPU外频等。BIOS芯片是可以写入的,这方便用户更新BIOS的版本,以获取更好的性能及对电脑最新硬件的支持,当然不利的一面便是会让主板遭受诸如CIH病毒的袭击。南北桥芯片:横跨AGP插槽左右两边的两块

15、芯片就是南北桥芯片。南桥多位于PCI插槽的上面;而CPU插槽旁边,被散热片盖住的就是北桥芯片。芯片组以北桥芯片为核心,一般情况,主板的命名都是以北桥的核心名称命名的(如P45的主板就是用的P45的北桥芯片)。北桥芯片主要负责处理CPU、内存、显卡三者间的“交通”,由于发热量较大,因而需要散热片散热。南桥芯片则负责硬盘等存储设备和PCI之间的数据流通。南桥和北桥合称芯片组。芯片组在很大程度上决定了主板的功能和性能。需要注意的是,AMD平台中部分芯片组因AMD CPU内置内存控制器,可采取单芯片的方式,如nVIDIA nForce 4便采用无北桥的设计。从AMD的K58开始,主板内置了内存控制器,

16、因此北桥便不必集成内存控制器,这样不但减少了芯片组的制作难度,同样也减少了制作成本。现在在一些高端主板上将南北桥芯片封装到一起,只有一个芯片,这样大大提高了芯片组的功能。bios和cmos的区别和作用CMOS是主板上的一块可读写的RAM芯片,用来保存硬件配置和参数设定.CMOS可由主板的电池供电,即使系统掉电,信息也不会丢失。BIOS是固化到主板ROM芯片上的程序,保存着计算机最重要的基本输入输出的程序、系统设置信息、开机自检程序和系统启动自举程序.,2)扩展槽部分所谓的“插拔部分”是指这部分的配件可以用“插”来安装,用“拔”来反安装。内存插槽:内存插槽一般位于CPU插座下方。图中的是DDR

17、SDRAM插槽,这种插槽的线数为184线。AGP插槽:颜色多为深棕色,位于北桥芯片和PCI插槽之间。AGP插槽有1、2、4和8之分。AGP4的插槽中间没有间隔,AGP2则有。在PCI Express出现之前,AGP显卡较为流行,其传输速度最高可达到2133MB/s(AGP8)。PCI Express插槽:随着3D性能要求的不断提高,AGP已越来越不能满足视频处理带宽的要求,目前主流主板上显卡接口多转向PCI Exprss。PCI Exprss插槽有1、2、4、8和16之分。注:目前主板支持双卡:(NVIDIA SLI/ATI 交叉火力)PCI插槽:PCI插槽多为乳白色,是主板的必备插槽,可以插

18、上软Modem、声卡、股票接受卡、网卡、多功能卡等设备。CNR插槽:多为淡棕色,长度只有PCI插槽的一半,可以接CNR的软Modem或网卡。这种插槽的前身是AMR插槽。CNR和AMR不同之处在于:CNR增加了对网络的支持性,并且占用的是ISA插槽的位置。共同点是它们都是把软Modem或是软声卡的一部分功能交由CPU来完成。这种插槽的功能可在主板的BIOS中开启或禁止。,3)对外接口部分硬盘接口:硬盘接口可分为IDE接口和SATA接口。在型号老些的主板上,多集成2个IDE口,通常IDE接口都位于PCI插槽下方,从空间上则垂直于内存插槽(也有横着的)。而新型主板上,IDE接口大多缩减,甚至没有,代

19、之以SATA接口。软驱接口:连接软驱所用,多位于IDE接口旁,比IDE接口略短一些,因为它是34针的,所以数据线也略窄一些。COM接口(串口):目前大多数主板都提供了两个COM接口,分别为COM1和COM2,作用是连接串行鼠标和外置Modem等设备。COM1接口的I/O地址是03F8h-03FFh,中断号是IRQ4;COM2接口的I/O地址是02F8h-02FFh,中断号是IRQ3。由此可见COM2接口比COM1接口的响应具有优先权,现在市面上已很难找到基于该接口的产品。PS/2接口:PS/2接口的功能比较单一,仅能用于连接键盘和鼠标。一般情况下,鼠标的接口为绿色、键盘的接口为紫色。PS/2接

20、口的传输速率比COM接口稍快一些,但这么多年使用之后,虽然现在绝大多数主板依然配备该接口,但支持该接口的鼠标和键盘越来越少,大部分外设厂商也不再推出基于该接口的外设产品,更多的是推出USB接口的外设产品,不过值得一提的时候,由于该接口使用非常广泛,因此很多使用者即使在使用USB也更愿意通过PS/2-USB转接器插到PS/2上使用,外加键盘鼠标每一代产品的寿命都非常长,因此接口现在依然使用效率极高,但在不久的将来,被USB接口所完全取代的可能性极高。USB接口:USB接口是现在最为流行的接口,最大可以支持127个外设,并且可以独立供电,其应用非常广泛。USB接口可以从主板上获得500mA的电流,

21、支持热拔插,真正做到了即插即用。一个USB接口可同时支持高速和低速USB外设的访问,由一条四芯电缆连接,其中两条是正负电源,另外两条是数据传输线。高速外设的传输速率为12Mbps,低速外设的传输速率为1.5Mbps。此外,USB2.0标准最高传输速率可达480Mbps。USB3.0已经开始出现在最新主板中,将不久会被推广。LPT接口(并口):一般用来连接打印机或扫描仪。其默认的中断号是IRQ7,采用25脚的DB-25接头。并口的工作模式主要有三种:1、SPP标准工作模式。SPP数据是半双工单向传输,传输速率较慢,仅为15Kbps,但应用较为广泛,一般设为默认的工作模式。2、EPP增强型工作模式

22、。EPP采用双向半双工数据传输,其传输速率比SPP高很多,可达2Mbps,目前已有不少外设使用此工作模式。3、ECP扩充型工作模式。ECP采用双向全双工数据传输,传输速率比EPP还要高一些,但支持的设备不多。现在使用LPT接口的打印机与扫描仪已经基本很少了,多为使用USB接口的打印机与扫描仪。MIDI接口:声卡的MIDI接口和游戏杆接口是共用的。接口中的两个针脚用来传送MIDI信号,可连接各种MIDI设备,例如电子键盘等,现在市面上已很难找到基于该接口的产品。SATA接口:SATA的全称是Serial Advanced Technology Attachment(串行高级技术附件,一种基于行业

23、标准的串行硬件驱动器接口),是由Intel、IBM、Dell、APT、Maxtor和Seagate公司共同提出的硬盘接口规范,在IDF Fall 2001大会上,Seagate宣布了Serial ATA 1.0标准,正式宣告了SATA规范的确立。SATA规范将硬盘的外部传输速率理论值提高到了150MB/s,比PATA标准ATA/100高出50%,比ATA/133也要高出约13%,而随着未来后续版本的发展,SATA接口的速率还可扩展到2X和4X(300MB/s和600MB/s)。从其发展计划来看,未来的SATA也将通过提升时钟频率来提高接口传输速率,让硬盘也能够超频。,3.内存内存是计算机中重要

24、的部件之一,它是与CPU进行沟通的桥梁。计算机中所有程序的运行都是在内存中进行的,因此内存的性能对计算机的影响非常大。内存(Memory)也被称为内存储器,其作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来,内存的运行也决定了计算机的稳定运行。内存是由内存芯片、电路板、金手指等部分组成的。在计算机的组成结构中,有一个很重要的部分,就是存储器。存储器是用来存储程序和数据的部件,对于计算机来说,有了存储器,才有记忆功能,才能保证正常工作。存储器的种类很多,按其用途可分为主存储

25、器和辅助存储器,主存储器又称内存储器(简称内存,港台称之为记忆体)。内存是电脑中的主要部件,它是相对于外存而言的。我们平常使用的程序,如Windows操作系统、打字软件、游戏软件等,一般都是安装在硬盘等外存上的,但仅此是不能使用其功能的,必须把它们调入内存中运行,才能真正使用其功能,我们平时输入一段文字,或玩一个游戏,其实都是在内存中进行的。就好比在一个书房里,存放书籍的书架和书柜相当于电脑的外存,而我们工作的办公桌就是内存。通常我们把要永久保存的、大量的数据存储在外存上,而把一些临时的或少量的数据和程序放在内存上,当然内存的好坏会直接影响电脑的运行速度。,1)ROM表示只读存储器(Read

26、Only Memory),在制造ROM的时候,信息(数据或程序)就被存入并永久保存。这些信息只能读出,一般不能写入,即使机器停电,这些数据也不会丢失。ROM一般用于存放计算机的基本程序和数据,如BIOS ROM。2)随机存储器(Random Access Memory)表示既可以从中读取数据,也可以写入数据。当机器电源关闭时,存于其中的数据就会丢失。我们通常购买或升级的内存条就是用作电脑的内存,内存条(SIMM)就是将RAM集成块集中在一起的一小块电路板,它插在计算机中的内存插槽上,以减少RAM集成块占用的空间。3)Cache也是我们经常遇到的概念,也就是平常看到的一级缓存(L1 Cache)

27、、二级缓存(L2 Cache)、三级缓存(L3 Cache)这些数据,它位于CPU与内存之间,是一个读写速度比内存更快的存储器。当CPU向内存中写入或读出数据时,这个数据也被存储进高速缓冲存储器中。当CPU再次需要这些数据时,CPU就从高速缓冲存储器读取数据,而不是访问较慢的内存,当然,如需要的数据在Cache中没有,CPU会再去读取内存中的数据。,4)内存主频和CPU主频一样,习惯上被用来表示内存的速度,它代表着该内存所能达到的最高工作频率。内存主频是以MHz(兆赫)为单位来计量的。内存主频越高在一定程度上代表着内存所能达到的速度越快。内存主频决定着该内存最高能在什么样的频率正常工作。大家知

28、道,计算机系统的时钟速度是以频率来衡量的。晶体振荡器控制着时钟速度,在石英晶片上加上电压,其就以正弦波的形式震动起来,这一震动可以通过晶片的形变和大小记录下来。晶体的震动以正弦调和变化的电流的形式表现出来,这一变化的电流就是时钟信号。而内存本身并不具备晶体振荡器,因此内存工作时的时钟信号是由主板芯片组的北桥或直接由主板的时钟发生器提供的,也就是说内存无法决定自身的工作频率,其实际工作频率是由主板来决定的。DDR内存和DDR2内存的频率可以用工作频率和等效频率两种方式表示,工作频率是内存颗粒实际的工作频率,但是由于DDR内存可以在脉冲的上升和下降沿都传输数据,因此传输数据的等效频率是工作频率的两

29、倍;而DDR2内存每个时钟能够以四倍于工作频率的速度读/写数据,因此传输数据的等效频率是工作频率的四倍。例如DDR 200/266/333/400的工作频率分别是100/133/166/200MHz,而等效频率分别是200/266/333/400MHz;DDR2 400/533/667/800的工作频率分别是100/133/166/200MHz,而等效频率分别是400/533/667/800MHz。5)内存的安装:,4.硬盘,硬盘的结构:盘片、盘体、磁头、电机盘片:盘体由多个盘片叠加在一起,每个盘片有上下两个磁面,磁面:有磁面上相同大小的同心圆构成一个柱面。磁道:每个磁面被划分为成若干个磁道扇

30、区:每个磁道再被划分成若干个扇区,每个扇512个字节,硬盘接口:ide、sata、scsi ATA 全称Advanced Technol ogy Attachment,是用传统的 40-pin 并口数据线连接主板与硬盘的,外部接口速度最大为133MB/s,因为并口线的抗干扰性太差,且排线占空间,不利计算机散热,将逐渐被 SATA 所取代。IDEIDE的英文全称为“Integrated Drive Electronics”,即“电子集成驱动器”,俗称PATA并口。SATA使用SATA(Serial ATA)口的硬盘又叫串口硬盘,是未来PC机硬盘的趋势。2001年,由Intel、APT、Dell、

31、IBM、希捷、迈拓这几大厂商组成的Serial ATA委员会正式确立了Serial ATA 1.0规范,2002年,虽然串行ATA的相关设备还未正式上市,但Serial ATA委员会已抢先确立了Serial ATA 2.0规范。Serial ATA采用串行连接方式,串行ATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。SATA2希捷在SATA的基础上加入NCQ本地命令阵列技术,并提高了磁盘速率。SCSI 全称为Small Co

32、mputer System Interface(小型机系统接口),历经多世代的发展,从早期的 SCSI-II,到目前的 Ultra320 SCSI 以及 Fiber-Channel(光纤通道),接头类型也有多种。SCSI 硬盘广为工作站级个人计算机以及服务器所使用,因为它的转速快,可达 15000 rpm,且数据传输时占用 CPU 运算资源较低,但是单价也比同样容量的 ATA 及 SATA 硬盘昂贵。SAS(Serial Attached SCSI)是新一代的SCSI技术,和SATA硬盘相同,都是采取序列式技术以获得更高的传输速度,可达到3Gb/s。此外也透过缩小连接线改善系统内部空间等。,硬

33、盘的物理结构1、磁头硬盘内部结构磁头是硬盘中最昂贵的部件,也是硬盘技术中最重要和最关键的一环。传统的磁头是读写合一的电磁感应式磁头,但是,硬盘的读、写却是两种截然不同的操作,为此,这种二合一磁头在设计时必须要同时兼顾到读/写两种特性,从而造成了硬盘设计上的局限。而MR磁(Magnetoresistive heads),即磁阻磁头,采用的是分离式的磁头结构:写入磁头仍采用传统的磁感应磁头(MR磁头不能进行写操作),读取磁头则采用新型的MR磁头,即所谓的感应写、磁阻读。这样,在设计时就可以针对两者的不同特性分别进行优化,以得到最好的读/写性能。另外,MR磁头是通过阻值变化而不是电流变化去感应信号幅

34、度,因而对信号变化相当敏感,读取数据的准确性也相应提高。而且由于读取的信号幅度与磁道宽度无关,故磁道可以做得很窄,从而提高了盘片密度,达到200MB/英寸2,而使用传统的磁头只能达到20MB/英寸2,这也是MR磁头被广泛应用的最主要原因。目前,MR磁头已得到广泛应用,而采用多层结构和磁阻效应更好的材料制作的GMR磁头(Giant Magnetoresistive heads)也逐渐普及。2、磁道当磁盘旋转时,磁头若保持在一个位置上,则每个磁头都会在磁盘表面划出一个圆形轨迹,这些圆形轨迹就叫做磁道。这些磁道用肉眼是根本看不到的,因为它们仅是盘面上以特殊方式磁化了的一些磁化区,磁盘上的信息便是沿着

35、这样的轨道存放的。相邻磁道之间并不是紧挨着的,这是因为磁化单元相隔太近时磁性会相互产生影响,同时也为磁头的读写带来困难。一张1.44MB的3.5英寸软盘,一面有80个磁道,而硬盘上的磁道密度则远远大于此值,通常一面有成千上万个磁道。3、扇区磁盘上的每个磁道被等分为若干个弧段,这些弧段便是磁盘的扇区,每个扇区可以存放512个字节的信息,磁盘驱动器在向磁盘读取和写入数据时,要以扇区为单位。英寸的软盘,每个磁道分为18个扇区。4、柱面硬盘通常由重叠的一组盘片构成,每个盘面都被划分为数目相等的磁道,并从外缘的“0”开始编号,具有相同编号的磁道形成一个圆柱,称之为磁盘的柱面。磁盘的柱面数与一个盘面上的磁

36、道数是相等的。由于每个盘面都有自己的磁头,因此,盘面数等于总的磁头数。所谓硬盘的CHS,即Cylinder(柱面)、Head(磁头)、Sector(扇区),只要知道了硬盘的CHS的数目,即可确定硬盘的容量,硬盘的容量=柱面数*磁头数*扇区数*512B。,转速(Rotationl Speed 或Spindle speed),是硬盘内电机主轴的旋转速度,也就是硬盘盘片在一分钟内所能完成的最大转数。转速的快慢是标示硬盘档次的重要参数之一,它是决定硬盘内部传输率的关键因素之一,在很大程度上直接影响到硬盘的速度。硬盘的转速越快,硬盘寻找文件的速度也就越快,相对的硬盘的传输速度也就得到了提高。硬盘转速以每

37、分钟多少转来表示,单位表示为RPM,RPM是Revolutions Per minute的缩写,是转/每分钟。RPM值越大,内部传输率就越快,访问时间就越短,硬盘的整体性能也就越好。硬盘的主轴马达带动盘片高速旋转,产生浮力使磁头飘浮在盘片上方。要将所要存取资料的扇区带到磁头下方,转速越快,则等待时间也就越短。因此转速在很大程度上决定了硬盘的速度。平均访问时间(Average Access Time)是指磁头从起始位置到达目标磁道位置,并且从目标磁道上找到要读写的数据扇区所需的时间。平均访问时间体现了硬盘的读写速度,它包括了硬盘的寻道时间和等待时间,即:平均访问时间=平均寻道时间+平均等待时间。

38、硬盘的平均寻道时间(Average Seek Time)是指硬盘的磁头移动到盘面指定磁道所需的时间。这个时间当然越小越好,目前硬盘的平均寻道时间通常在8ms到12ms之间,而SCSI硬盘则应小于或等于8ms。硬盘的等待时间,又叫潜伏期(Latency),是指磁头已处于要访问的磁道,等待所要访问的扇区旋转至磁头下方的时间。平均等待时间为盘片旋转一周所需的时间的一半,一般应在4ms以下。传输速率(Data Transfer Rate)硬盘的数据传输率是指硬盘读写数据的速度,单位为兆字节每秒(MB/s)。硬盘数据传输率又包括了内部数据传输率和外部数据传输率。内部传输率(Internal Transf

39、er Rate)也称为持续传输率(Sustained Transfer Rate),它反映了硬盘缓冲区未用时的性能。内部传输率主要依赖于硬盘的旋转速度。外部传输率(External Transfer Rate)也称为突发数据传输率(Burst Data Transfer Rate)或接口传输率,它标称的是系统总线与硬盘缓冲区之间的数据传输率,外部数据传输率与硬盘接口类型和硬盘缓存的大小有关。,缓存(Cache memory)是硬盘控制器上的一块内存芯片,具有极快的存取速度,它是硬盘内部存储和外界接口之间的缓冲器。由于硬盘的内部数据传输速度和外界介面传输速度不同,缓存在其中起到一个缓冲的作用。缓

40、存的大小与速度是直接关系到硬盘的传输速度的重要因素,能够大幅度地提高硬盘整体性能。当硬盘存取零碎数据时需要不断地在硬盘与内存之间交换数据,如果有大缓存,则可以将那些零碎数据暂存在缓存中,减小外系统的负荷,也提高了数据的传输速度。硬盘的缓存主要起三种作用:一是预读取。当硬盘受到CPU指令控制开始读取数据时,硬盘上的控制芯片会控制磁头把正在读取的簇的下一个或者几个簇中的数据读到缓存中(由于硬盘上数据存储时是比较连续的,所以读取命中率较高),当需要读取下一个或者几个簇中的数据的时候,硬盘则不需要再次读取数据,直接把缓存中的数据传输到内存中就可以了,由于缓存的速度远远高于磁头读写的速度,所以能够达到明

41、显改善性能的目的;二是对写入动作进行缓存。当硬盘接到写入数据的指令之后,并不会马上将数据写入到盘片上,而是先暂时存储在缓存里,然后发送一个“数据已写入”的信号给系统,这时系统就会认为数据已经写入,并继续执行下面的工作,而硬盘则在空闲(不进行读取或写入的时候)时再将缓存中的数据写入到盘片上。虽然对于写入数据的性能有一定提升,但也不可避免地带来了安全隐患如果数据还在缓存里的时候突然掉电,那么这些数据就会丢失。对于这个问题,硬盘厂商们自然也有解决办法:掉电时,磁头会借助惯性将缓存中的数据写入零磁道以外的暂存区域,等到下次启动时再将这些数据写入目的地;第三个作用就是临时存储最近访问过的数据。有时候,某

42、些数据是会经常需要访问的,硬盘内部的缓存会将读取比较频繁的一些数据存储在缓存中,再次读取时就可以直接从缓存中直接传输。缓存容量的大小不同品牌、不同型号的产品各不相同,早期的硬盘缓存基本都很小,只有几百KB,已无法满足用户的需求。2MB和8MB缓存是现今主流硬盘所采用,而在服务器或特殊应用领域中还有缓存容量更大的产品,甚至达到了16MB、64MB等。大容量的缓存虽然可以在硬盘进行读写工作状态下,让更多的数据存储在缓存中,以提高硬盘的访问速度,但并不意味着缓存越大就越出众。缓存的应用存在一个算法的问题,即便缓存容量很大,而没有一个高效率的算法,那将导致应用中缓存数据的命中率偏低,无法有效发挥出大容

43、量缓存的优势。算法是和缓存容量相辅相成,大容量的缓存需要更为有效率的算法,否则性能会大大折扣,从技术角度上说,高容量缓存的算法是直接影响到硬盘性能发挥的重要因素。更大容量缓存是未来硬盘发展的必然趋势。,S.M.A.R.T.技术的全称是Self-Monitoring,Analysis and Reporting Technology,即“自监测、分析及报告技术”。在ATA-3标准中,S.M.A.R.T.技术被正式确立。S.M.A.R.T.监测的对象包括磁头、磁盘、马达、电路等,由硬盘的监测电路和主机上的监测软件对被监测对象的运行情况与历史记录及预设的安全值进行分析、比较,当出现安全值范围以外的情

44、况时,会自动向用户发出警告,而更先进的技术还可以提醒网络管理员的注意,自动降低硬盘的运行速度,把重要数据文件转存到其它安全扇区,甚至把文件备份到其它硬盘或存储设备。通过S.M.A.R.T.技术,确实可以对硬盘潜在故障进行有效预测,提高数据的安全性。但我们也应该看到,S.M.A.R.T.技术并不是万能的,它只能对渐发性的故障进行监测,而对于一些突发性的故障,如盘片突然断裂等,硬盘再怎么smart也无能为力了。因此不管怎样,备份仍然是必须的。硬盘的安装及跳线调整:,5.显卡显卡的接口类型有PCI、AGP、PCI-E 工作原理:数据(data)一旦离开CPU,必须通过 4 个步骤,最后才会到达显示屏

45、:1、从总线(bus)进入GPU(Graphics Processing Unit,图形处理器)-将CPU送来的数据送到GPU(图形处理器)里面进行处理。2、从 video chipset(显卡芯片组)进入video RAM(显存)-将芯片处理完的数据送到显存。3、从显存进入Digital Analog Converter(=RAM DAC,随机读写存储模数转换器),将显示 ATI HD 4890对决NVIDIA GTX 275显存读取出数据再送到RAM DAC进行数据转换的工作(数字信号转模拟信号)。4、从 DAC 进入显示器(Monitor)-将转换完的模拟信号送到显示屏。1)GPU(类似

46、于主板的CPU)图形处理器2)显存(类似于主板的内存)3)显卡bios(类似于主板的bios)4)显卡PCB板(类似于主板的PCB板)5)RAMDAC是Random Access Memory Digital/Analog Convertor的缩写,即随机存取内存数字模拟转换器。,什么是集成显卡?集成显卡是将显示芯片、显存及其相关电路都做在主板上,与主板融为一体;集成显卡的显示芯片有单独的,但大部分都集成在主板的北桥芯片中;一些主板集成的显卡也在主 板上单独安装了显存,但其容量较小,集成显卡的显示效果与处理性能相对较弱,不能对显卡进行硬件升级,但可以通过CMOS调节频率或刷入新BIOS文件实现

47、软件升级来挖掘显示 芯片的潜能;集成显卡的优点是功耗低、发热量小、部分集成显卡的性能已经可以媲美入门级的独立显卡,所以不用花费额外的资金购买显卡。什么是独立显卡?独立显卡是指将显示芯片、显存及其相关电路单独做在一块电路板上,自成一体而作为一块独立的板卡存在,它需占用主板的扩展插槽(ISA、PCI、AGP或PCI-E。独立显卡单独 安装有显存,一般不占用系统内存,在技术上也较集成显卡先进得多,比集成显卡能够得到更好的显示效果和性能,容易进行显卡的硬件升级;其缺点是系统功耗有所加大,发热 量也较大,需额外花费购买显卡的资金。独立显卡成独立的板卡存在,需要插在主板的相应接口上,独立显卡具备单独的显存

48、,不占用系统内存,而且技术上领先于集成显卡,能 够提供更好的显示效果和运行性能。集成显卡的优点:1,价格便宜。2,质量稳定,不容易出现接触不好的毛病。3,性能也基本过得去。缺点:1,性能不高,大型的3d游戏一般不能玩。2,有的集成显卡的主板甚至没有外置显卡插槽,不能升级。3,由于集成显卡需要无内存,需占用系统内存,使主内存的可用容量减少。4,集成显卡无GPU,需使用cpu来运算,对cpu的占用比外置显卡要高一些。,6.声卡声卡的接口类型有ISA、PCI、USB(主要分为板卡式、集成式和外置式三种接口类型)声卡(Sound Card)也叫音频卡(港台称之为声效卡):声卡是多媒体技术中最基本的组成

49、部分,是实现声波数字信号相互转换的一种硬件。声卡的基本功能是把来自话筒、磁带、光盘的原始声音信号加以转换,输出到耳机、扬声器、扩音机、录音机等声响设备,或通过音乐设备数字接口(MIDI)使乐器发出美妙的声音。麦克风和喇叭所用的都是模拟信号,而电脑所能处理的都是数字信号,两者不能混用,声卡的作用就是实现两者的转换。从结构上分,声卡可分为模数转换电路和数模转换电路两部分,模数转换电路负责将麦克风等声音输入设备采到的模拟声音信号转换为电脑能处理的数字信号;而数模转换电路负责将电脑使用的数字声音信号转换为喇叭等设备能使用的模拟信号。声卡接口线性输入接口,标记为“Line In”。Line In端口将品

50、质较好的声音、音乐信号输入,通过计算机的控制将该信号录制成一个 文件。通常该端口用于外接辅助音源,如影碟机、收音机、录像机及VCD回放卡的音频输出。线性输出端口,标记为“Line Out”。它用于外接音箱功放或带功放的音箱。第二个线性输出端口,一般用于连接四声道以上的后端音箱。话筒输入端口,标记为“Mic In”。它用于连接麦克风(话筒),可以将自己的歌声录下来实现基本的“卡拉OK功能”。扬声器输出端口,标记为“Speaker”或“SPK”。它用于插外接音箱的音频线插头。MIDI及游戏摇杆接口,标记为“MIDI”。几乎所有的声卡上均带有一个游戏摇杆接口来配合模拟飞行、模拟驾驶等游戏软件,这个接

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号