《随机过程课件第一章-华科.ppt》由会员分享,可在线阅读,更多相关《随机过程课件第一章-华科.ppt(34页珍藏版)》请在三一办公上搜索。
1、随机过程,卢正新()电子与信息工程系华中科技大学,第一章 随机过程的概念与基本类型,预备知识简要回顾一下概率论中与本课程有关的基本概念:随机试验、样本空间、事件、概率、随机变量等,随机试验,试验结果事先不能准确预言,三个特征:可以在相同条件下重复进行;每次试验结果不止一个,可预先知道试验所有可能结果;每次试验前不能确定那个结果会出现。,样本空间,随机试验所有可能结果组成的集合,记为,事件,样本空间的子集A称为事件,集合运算,古典概率,随机试验中一切可能结果是有限多个;每个结果出现的可能性是相等的;则事件A发生的概率可表示为,几何概率,计算无穷个基本事件的情形;样本点具有均匀分布的性质;设用L(
2、)作为区域大小的量度,而区域中任意可能出现的小区域A的量度用L(A)表示;则事件A(或某一区域)发生的概率表示为,统计概率,用于计算前两种随机概率概括不了的随机事件概率;用事件的频率近似地去表达事件的概率;若在同样的条件下,将随机试验独立的重复做n次,事件A出现了nA次,则事件A的频率是,当试验次数n增大时,其中大量的频率聚集在一个常数周围;这个常数是客观存在的,反映了事件A出现可能性的大小,我们认为这个常数就是事件的概率。,公理化定义概率,对于一个事件A样本空间,赋予一个实数P,若满足:0P(A)1;P()=1;若A1,A2,.,Ak两两互斥,则,我们称P(A)为事件A的一个概率。,概率空间
3、,规定一个随机试验,所有样本点之集合构成样本空间,在样本空间中一个样本点或若干个样本点之适当集合F称为事件域,F中的每一个集合称为事件。若A F,则P(A)就是事件A的概率,并称这三个实体的结合(,F,P)为一个概率空间,条件概率,在事件B已发生这一条件下,事件A发生的概率。,全概率,若有N个互斥事件Bn(n=1,2,N),它的并集等于整个样本空间,则,设事件A1,A2,An构成一个完备事件组,概率P(Ai)0,i=1,2,n,对于任何一个事件B,若P(B)0,有,贝叶斯公式,独立事件,随机变量,定义:设(,F,P)是概率空间,X=X(e)是定义在上的实函数,如果对任意实数x,e:X(e)x
4、F,则称X(e)是F上的随机变量。,事件,随机变量,离散型随机变量:只取有限个数值或可列无穷多个值。,连续型随机变量:从原样本空间到新样本空间的映射是某一个范围,是一段(或几段)实线(也可能是整个坐标轴),随机变量可以取值于某一区间中的任一数。,分布函数(一个描述随机变量取值的概率分布情况的统一方法),性质:F(x)是非降函数;0F(x)1;Px1Xx2=F(x2)-F(x1)F(x)是右连续。,离散型随机变量的概率分布用分布列描述,01分布,二项分布,泊松分布,连续型随机变量的概率分布用概率密度描述,均匀分布,正态分布,指数分布,随机变量函数的分布,在给定某任意的随机变量X,以及它的概率分布
5、函数FX(x),希望进一步求出给定的随机变量的某些可测函数(如Y=g(X))的概率分布函数。,非线性放大器,Y,X,Y的概率分布函数公式为,如果上式右端概率的导数对于y处处存在,那么这个导数就给出了随机变量Y的概率密度,n维随机变量及其分布函数,设(,F,P)是概率空间,X=X(e)(X1(e),Xn(e))是定义在上的n维空间Rn中取值的向量函数。如果对于任意X=(X1,Xn)Rn,e:X1(e)x1,Xn(e)xn F,则称X=X(e)为n维随机变量。称,为X=(X1,X2,Xn)的联合分布函数,边际分布,若二维联合分布函数中有一个变元趋于无穷,则其极限函数便是一维分布函数,对于这种特殊性
6、质,我们称其为边际分布。对于任意两个随机变量X,Y,其联合分布函数为FXY(x,y),则,分别称F1(x)和F2(y)为FXY(x,y)关于X和关于Y的边际分布函数。,离散型随机变量(X,Y)边际分布函数计算如下,连续型随机变量(X,Y)边际分布函数计算如下,相互独立的随机变量,设X,Y是两个随机变量,若对任意实数x,y有,则称X,Y为相互独立的随机变量。,若X,Y为相互独立随机变量,则有,联合密度,边际密度,边际密度,联合密度,条件分布,条件概率,条件分布函数,两边对x微分,随机变量的数字特征,统计平均与随机变量的数学期望随机变量函数的期望值方差协方差相关系数独立与不相关,统计平均与数学期望
7、,设离散随机变量X,它可能取4个值x1,x2,x3,x4,做试验n次,计算X的算术平均可得:,P(X=xk),对于离散型随机变量可以用脉冲函数来表示其概率密度,冲激函数,随机变量数学期望定义,随机变量函数的期望值,已知随机变量X的数学期望值,求随机变量函数Y=g(X)的数学期望,,对于多维随机变量,随机向量函数的数学期望,设X1,X2,Xn为随机变量,求随机变量函数Y=a1X1+a2X2+anXn的数学期望。,N维随机变量的数学期望,已知随机变量X1和X2,求随机变量函数YaX1+bX2的数学期望,加权和的期望等于加权期望的和,求数学期望是线性运算,数学期望的线性运算不受独立条件限制,已知随机
8、变量X1和X2,求随机变量函数Yg1(X1)g2(X2)的数学期望,假设两个随机变量X1和X2相互独立,则有,因此,有,K阶原点矩,k阶中心矩,随机变量X,若E|X|k,称EXk为k阶原点矩。,离散随机变量,连续随机变量,又若EX存在,且E|X-EX|k,称,为X的k阶中心矩。,离散随机变量,连续随机变量,一阶原点矩就是随机变量的数学期望,,数学期望大致的描述了概率分布的中心。,二阶中心矩就是随机变量的方差,,方差反映随机变量取值的离散程度。,01分布,泊松分布,正态分布,数学期望和方差(见page3,表11),中心化的两个随机变量X-EX,Y-EY的互相关矩称为随机变量X和Y的协方差,,协方
9、差是描述随机现象中,随机变量X和Y概率相关的程度。,引入一个描述两个随机变量相关程度的系数,XY称为归一化的协方差系数或相关系数。,若XY0,则称随机变量X和Y不相关。,若两个随机变量X和Y的联合矩满足,则称随机变量X和Y统计独立,统计独立,不相关,统计独立,不相关,设Z是一个随机变量,具有均匀概率密度,令X=sinZ,Y=cosZ,求随机变量X和Y是否相关,是否独立?,特征函数、母函数,特征函数、母函数,小节,概率论中的基本概念随机试验、样本空间、事件、概率、概率空间、条件概率、全概率。随机变量及分布函数随机变量、分布函数、随机变量函数的分布、n维随机变量、边际分布、条件分布。随机变量的数字特征统计平均、数学期望、方差、协方差、相关系数、相关性和统计独立。,作业,复习概率论与数理统计方面的知识。,预备知识结束,