《定积分的背景-面积和路程问题.ppt》由会员分享,可在线阅读,更多相关《定积分的背景-面积和路程问题.ppt(25页珍藏版)》请在三一办公上搜索。
1、定积分的背景面积与路程问题,高二数学 选修2-1 第四章 定积分,以上由曲线围成的图形的面积该怎样计算?,我们学过如何求正方形、长方形、三角形等的面积,这些图形都是由直线段围成的.那么,如何求曲线围成的平面图形的面积呢?这就是定积分要解决的问题.定积分在科学研究和实际生活中都有非常广泛的应用.本节我们将了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念.,图中阴影部分是由曲线段和直线段围成的,通常称这样的平面图形为曲边梯形.,a,b,曲边梯形定义:,我们把由直线 x=a,x=b(ab),y=0和曲线y=f(x)所围成的图形叫作曲边梯形.,探究点1 曲边梯形的定义,对曲
2、边梯形概念的理解:,(1)曲边梯形是由曲线段和直线段所围成的平面图形.(2)曲边梯形与“直边图形”的主要区别在于前者有一边是曲线段而“直边图形”的所有边都是直线段.,探究点2 估计曲边梯形的面积,我们曾经用正多边形逼近圆的方法(即“以直代曲”的思想)计算出了圆的面积,能否也用直边形(如矩形)逼近曲边梯形的方法求阴影部分的面积呢?,割圆术,问题1 图中阴影部分是由抛物线,直线以及 x 轴所围成的平面图形,试估计这个曲边梯形的面积 S.,分析 首先,将区间0,15等分,如图所示.,图(1)中,所有小矩形的面积之和(记为S1)显然大于所求的曲边梯形的面积,我们称S1为S的过剩估计值,有,(1),图(
3、2)中,所有阴影小矩形的面积之和(记为s1)显然小于所求曲边梯形的面积,我们称s1为S的不足估计值,有,.,(2),思考:我们可以用S1或s1近似表示S,但是都存在误差,误差有多大呢?提示:二者之差为S1-s1=0.2,如图(3)中阴影所示,无论用S1还是用s1来表示曲边梯形的面积,误差都不会超过0.2.,(3),1,(4),不足估计值为,二者的差值为S2-s2=0.1,此时,无论用S2还是用s2来表示S,误差都不超过0.1.,结论:区间分得越细,误差越小.当被分割成的小区间的长度趋于0时,过剩估计值和不足估计值都会趋于曲边梯形的面积.,.,.,通过下面的演示我们如何做到使误差小于0.01.,
4、输入数字,点击确定.,练一练:,求曲线y=x3与直线x=1,y=0所围成的平面图形的面积的估计值,并写出估计误差.(把区间0,1 5等分来估计),解析 把区间 0,1 5等分,以每一个小区间左右端点的函数值作为小矩形的高,得到不足估计值 和过剩估计值,如下:,估计误差不会超过-=0.2,探究点3 估计变速运动的路程,已知匀速运动物体的速度v和运动的时间t,我们可以求出它走过的路程s=vt,那么如何求非匀速运动的物体走过的路程呢?,问题2 想象这样一个场景:一辆汽车的司机猛踩刹车,汽车滑行5s后停下,在这一过程中,汽车的速度 v(单位:m/s)是时间 t 的函数:,请估计汽车在刹车过程中滑行的距
5、离 s.,分析:由已知,汽车在刚开始刹车时的速度是v(0)=25m/s,我们可以用这个速度来近似替代汽车在这段时间内的平均速度,求出汽车的滑行距离:s=255=125(m)但显然,这样的误差太大了.为了提高精确度,我们可以采用分割滑行时间的方法来估计滑行距离.首先,将滑行的时间5s平均分成5份.我们分别用v(0),v(1),v(2),v(3),v(4)近似替代汽车在01s、12s、23s、34s、45s内的平均速度,求出滑行距离s1:,由于v是下降的,所以显然s1大于s,我们称它为汽车在5 s内滑行距离的过剩估计值.用v(1),v(2),v(3),v(4),v(5)分别近似替代汽车在01s、1
6、2s、23s、34s、45s内的平均速度,求出汽车在5s内滑行距离的不足估计值:,不论用过剩估计值s1还是不足估计值 表示s,误差都不超过:,要对区间多少等分时,才能保证估计误差小于0.1?,为了得到更加精确的估计值,可以将滑行时间分得更细些,因为我们知道,滑行时间的间隔越小,用其中一点的速度代替这段时间内的平均值,其速度误差就越小.比如,将滑行时间5s平均分成10份.用类似的方法得到汽车在5s内滑行距离的过剩估计值s2:,结论 滑行时间等分得越细,误差越小.当滑行时间被等分后的小时间间隔的长度趋于0时,过剩估计值和不足估计值就趋于汽车滑行的路程.,汽车在5s内滑行距离的不足估计值:,无论用s
7、2还是 表示汽车的滑行距离s,误差都不超过,抽象概括,前面,我们通过“以直代曲”的逼近方法解决了求曲边梯形的面积的问题,对于变速运动路程的步骤:,分割区间,过剩估计值不足估计值,逼近所求路程,所分区间长度趋于 0,估计值趋于所求值,变式练习,汽车作变速直线运动,在时刻t的速度为v(t)=-t2+2,(单位:km/h),那么它在0t1(单位:h)这段时间内行驶的路程s是多少?(将行驶的时间1h平均分成10份),解析 分别用v(0),v(0.1),v(0.2),v(0.9)近似替代汽车在00.1h,0.10.2h,0.80.9h,0.91h的平均速度,求出汽车在1h时行驶的路程的过剩估计值,=v(
8、0)+v(0.1)+v(0.2)+v(0.9)0.1=1.715(km).,分别用v(0.1),v(0.2),v(0.3),v(1)近似替代汽车在00.1h,0.10.2h,0.80.9h,0.91h的平均速度,求出汽车在1h时行驶的路程的不足估计值,=v(0.1)+v(0.2)+v(0.3)+v(1)0.1=1.615(km),无论用 还是 估计汽车行驶的路程s,估计误差都不会超过1.715-1.615=0.1(km),1.曲边梯形的定义:,分割区间,过剩估计值不足估计值,逼近所求值,2.求面积和路程问题的步骤:,我们把由直线 x=a,x=b(a b),y=0和曲线 y=f(x)所围成的图形叫作曲边梯形.,回顾本节课你有什么收获?,