材料的物理力学性能.ppt

上传人:牧羊曲112 文档编号:6169285 上传时间:2023-10-02 格式:PPT 页数:80 大小:1.34MB
返回 下载 相关 举报
材料的物理力学性能.ppt_第1页
第1页 / 共80页
材料的物理力学性能.ppt_第2页
第2页 / 共80页
材料的物理力学性能.ppt_第3页
第3页 / 共80页
材料的物理力学性能.ppt_第4页
第4页 / 共80页
材料的物理力学性能.ppt_第5页
第5页 / 共80页
点击查看更多>>
资源描述

《材料的物理力学性能.ppt》由会员分享,可在线阅读,更多相关《材料的物理力学性能.ppt(80页珍藏版)》请在三一办公上搜索。

1、第二章 建筑材料2.1 钢材,第一节 建筑结构用钢的基本要求第二节 钢材的主要机械性能第三节 影响钢材性能的主要因素第四节 建筑结构用钢的种类及选择,第一节 建筑结构用钢的基本要求,一基本要求钢材种类繁多,规格、用途也不相同,对建筑结构用钢来说,主要有三方面的要求。1、较高的强度:结构的承载力大,所需的截面小,结构的自重轻;2、较好的塑性及韧性:塑性好,不易发生脆性破坏;韧性好,利于承受动力荷载;3、良好的加工性能与耐久性:包括可焊性、冷弯性能以及耐腐性能;据上要求,钢结构设计规范GB50017-2003推荐承重结构用钢宜采用:炭素结构钢中的Q235钢及低合金高强结构钢中的Q345、Q390和

2、Q420钢四种钢材。二、化学成分,第二节 钢材的主要机械性能,一、单向拉伸试验曲线 根据钢材单向拉伸性能曲线,工程应用中,钢材的性能按理想弹塑性体考虑,fy定为钢材拉、压强度标准值。,二、钢材的主要机械性能强度:fy 强度设计标准值,设计依据;fu钢材的最大承载强度,安全储备。塑性5(10),钢材产生塑变时而不发生脆性断裂的能力,便于内力重分布,吸收能量,重要指标。冷弯性能90o、180o,在冷加工过程中产生塑性变形时,对产生裂纹的敏感性,是判别钢材塑性及冶金质量的综合指标。韧性冲击韧性k,钢材在一定温度下塑变及断裂过程中吸收能量的能力,用于表征钢材承受动力荷载的能力(动力指标),按常温(20

3、o)、零温(0o)、负温(-20o、-40o)区分。可焊性表征钢材焊接后具备良好焊接接头性能的能力不产生裂纹,焊缝影响区材性满足有关要求。,第三节 影响钢材性能的主要因素,1、化学成份2、冶金及轧制3、冷作硬化与时效硬化4、复杂应力与应力集中5、残余应力6、温度,1、化学成份的影响 基本成份为Fe,炭钢中含量占99,C、Si、Mn为杂质元素,S、P、N、O为冶炼过程中不易除尽的有害元素。C:含C使强度塑性、韧性、可焊性,应控制在0.22%,焊接结构应控制在0.20%。Si:含Si适量使强度 其它影响不大,有益,应控制0.10.3%Mn:含Si适量使强度 降低S、O的热脆影响,改善热加工性能,对

4、其它性能影响不大,有益。S:含量使强度塑性、韧性、性能冷弯、可焊性;高温时使钢材变脆热脆现象。P:低温时使钢材变脆冷脆现象;其它同SO、N:O同S;N同P,控制含量0.008%,2、冶金与轧制的影响冶金的影响主要为脱氧方法:沸腾钢用Mn为脱氧剂,时间快,价格低,质量差;镇静钢用Si为脱氧剂,时间慢,价格高,质量好。反复的轧制可以改善钢材的塑性,同时可以使钢材中的气孔、裂纹、疏松等缺陷焊合,使金属晶体组织密实,晶粒细化,消除纤维组织缺陷,使钢材的力学性能提高。3、冷作硬化与时效硬化由于某种因素的影响而使钢材强度提高,塑性、韧性下降,增加脆性的现象称之为硬化现象。冷加工时(常温进行弯折、冲孔剪切等

5、),钢材发生塑性变形从而使钢材变硬的现象称之为冷作硬化。钢材中的C、N,随着时间的增长和温度的变化,而形成碳化物和氮化物,使钢材变脆的“老化”现象称之为时效硬化。,4、复杂应力与应力集中的影响钢材在多向同号应力场作用下,一向的变形受到另一向的限制,而使钢材强度增加,塑性、韧性下降,异号应力场时则相反。钢构件由于截面的改变以及孔洞、凹槽、裂纹等原因而使构件内产生应力集中,应力集中实际为:局部应力增大并多为同号应力场。5、残余应力的影响钢材在轧制、焊接、切割等过程中会产生在构件内部自相平衡的内力(P26,图2.10),残余应力虽对构件的强度无影响,但对构件的变形(刚度)、疲劳以及稳定承载力产生不利

6、影响(后续章节中将详细介绍)。,6、温度的影响 温度的影响,一般可分正温与负温影响两部分。正温影响(P27,图2.11)总体影响规律为温度上升,钢材的强度降低,塑性、韧性提高,这一现象称之为热塑现象,温度达600o左右时,钢材的强度几乎降至为零,而塑性、韧性极大,易于进行热加工,此温度称之为热煅温度。需要说明:钢材在300o左右时,强度提高,塑性、韧性下降,钢材表面呈蓝色,这一反覆现象称之为蓝脆现象。钢材在300o以上时应采取隔热措施。负温影响(P27,图2.12)随着温度的降低钢材的强度提高,塑性、韧性降低,脆性增大,称之为低温冷脆,当温度降至某一特定温度时钢材的脆性急剧增大,称此温度点为转

7、脆温度。,第四节 建筑结构用钢的种类与选择 一、钢材的牌号表示方法及结构用钢的种类,钢材牌号由:“Q、屈服点值、质量等级、脱氧方法”四部分组成。Q:表示“屈”字拼音首位字母,意为“屈服强度”;质量等级:分AE五级(字序越高质量越好);脱氧方法:F沸腾钢;Z镇静钢(一般省略);b半镇静钢;TZ特殊镇静钢。注:炭素结构钢分:A、B、C、D 四级,含所有脱氧方法;低合金结构钢分:A、B、C、D、E五级,只有镇静钢和特殊镇静钢。如前所述建筑结构用钢,宜选炭素结构钢中的Q235及低合金钢中的Q345、Q390、Q420四种钢材。,2.5.3 型钢规格 钢结构构件一般宜直接选用型钢,这样可减少制造工作量,

8、降低造价。型钢尺寸不够合适或构件很大时则用钢板制作。型钢有热轧及冷成型两种。1 热轧钢板 热轧钢板分厚板及薄板两种,厚板的厚度为 4.560mm(广泛用来组成焊接构件和连接钢板),薄板厚度为0.354mm(冷弯薄壁型钢的原料)。在图纸中钢板用“-厚 x 宽 x 长(单位为毫米)”前面附加钢板横断面的方法表示,如:-12 x800 x 2100等。2 热轧型钢角钢有等边和不等边两种。等边角钢,以边宽和厚度表示,如 L100 x10为肢宽 100 mm、厚 10mm 的等边角钢。不等边角钢,则以两边宽度和厚度表示,如 L100 x 80 x10 等。,槽钢我国槽钢有两种尺寸系列,即热轧普通槽钢与热

9、轧轻型槽钢。前者的表示法如 30a,指槽钢外廓高度为 30cm 且腹板厚度为最薄的一种;后者的表示法例如 25Q,表示外廓高度为 25cm,Q 是汉语拼音“轻”的拼音字首。同样号数时,轻型者由于腹板薄及翼缘宽而薄,因而截面积小但回转半径大,能节约钢材减少自重。不过轻型系列的实际产品较少。工字钢与槽钢相同,也分成上述的两个尺寸系列:普通型和轻型。与槽钢一样,工字钢外轮廓高度的厘米数即为型号,普通型者当型号较大时腹板厚度分 a、b 及c三种。轻型的由于壁厚已薄故不再按厚度划分。两种工字钢表示法如:I32c,I32Q 等。H 型钢和剖分 T 型钢热轧 H 型钢分为三类:宽翼缘 H 型钢(HW)、中翼

10、缘 H 型钢(HM)和窄翼缘 H 型钢(HN)。H 型钢型号的表示方法是先用符号 HW、HM 和 HN 表示 H 型钢的类别,后面加“高度(毫米)x 宽度(毫米)”,例如HW300 x300,即为截面高度为 300mm,翼缘宽度为 300mm 的宽翼缘 H 型钢。剖分 T 型钢也分为三类,即:宽翼缘剖分 T 型钢(TW)、中翼缘剖分 T 型钢(TM)和窄翼缘剖分 T 型钢(TN)。剖分 T 型钢系由对应的 H 型钢沿腹板中部对等剖分而成。其表示方法与 H 型钢类同。,3 冷弯薄壁型钢 是用 26mm 厚的薄钢板经冷弯或模压而成型的(如图示)。压型钢板是近年来开始使用的薄壁型材,所用钢板厚度为

11、0.42mm,用做轻型屋面等构件。,热轧型钢的型号及截面几何特性见书后附表 1 附表 6。薄壁型钢的常用型号及截面几何特性见 冷弯薄壁型钢结构技术规范 GB 50018 一 2002 的附录。,2.5.2 钢材的选择,选择钢材的目的是要做到结构安全可靠,同时用材经济合理。为此,在选择钢材时应考虑下列各因素:1.结构或构件的重要性;2.荷载性质(静载或动载);3.连接方法(焊接、铆接或螺栓连接);4.工作条件(温度及腐蚀介质)。对于重要结构、直接承受动载的结构、处于低温条件下的结构及焊接结构,应选用质量较高的钢材。Q235A 钢的保证项目中,碳含量、冷弯试验合格和冲击韧性值并未作为必要的保证条件

12、,所以只宜用于不直接承受动力作用的结构中。当用于焊接结构时,其质量证明书中应注明碳含量不超过 0.2%。当选用 Q235A、B 级钢时,还需要选定钢材的脱氧方法。连接所用钢材,如焊条、自动或半自动焊的焊丝及螺栓的钢材应与主体金属的强度相适应。,第二章 钢筋和混凝土的材料性能,2.2 钢筋的物理力学性能,2.1 钢筋的物理力学性能 钢筋的品种和级别 热轧钢筋、冷加工钢筋(冷拉和冷拔)和中高强钢丝和钢绞线、热处理钢筋,第二章 钢筋和混凝土的材料性能,2.2 钢筋的物理力学性能,热轧钢筋的分类HPB235级、HRB335级、HRB400级、RRB400级,屈服强度 fyk(标准值=钢材废品限值,保证

13、率97.73%)HPB235级:fyk=235 N/mm2HRB335级:fyk=335 N/mm2HRB400级、RRB400级:fyk=400 N/mm2,第二章 钢筋和混凝土的材料性能,HPB235级(级)钢筋多为光面钢筋,多作为现浇楼板的受力钢筋和箍筋。HRB335级(级)和 HRB400级(级)钢筋强度较高,多作为钢筋混凝土构件的受力钢筋,尺寸较大的构件,也有用级钢筋作箍筋以增强与混凝土的粘结,外形制作成月牙肋或等高肋的变形钢筋。RRB400级(级)钢筋强度太高,不适宜作为钢筋混凝土构件中的配筋,一般冷拉后作预应力筋。延伸率d5=25、16、14、10%,直径840。,2.2 钢筋的

14、物理力学性能,第二章 钢筋和混凝土的材料性能,钢丝,中强钢丝的强度为8001200MPa,高强钢丝、钢绞线的为 1470 1860MPa;延伸率d10=6%,d100=3.54%;钢丝的直径39mm;外形有光面、刻痕和螺旋肋三种,另有二股、三股和七股钢绞线,外接圆直径9.515.2 mm。中高强钢丝和钢绞线均用于预应力混凝土结构。冷加工钢筋是由热轧钢筋和盘条经冷拉、冷拔、冷轧、冷扭加工后而成。冷加工的目的是为了提高钢筋的强度,节约钢材。但经冷加工后,钢筋的延伸率降低。近年来,冷加工钢筋的品种很多,应根据专门规程使用。热处理钢筋是将级钢筋通过加热、淬火和回火等调质工艺处理,使强度得到较大幅度的提

15、高,而延伸率降低不多。用于预应力混凝土结构。,2.2 钢筋的物理力学性能,第二章 钢筋和混凝土的材料性能,2.1.2 钢筋的强度与变形 有明显屈服点的钢筋,ef为颈缩阶段,2.2 钢筋的物理力学性能,第二章 钢筋和混凝土的材料性能,几个指标:屈服强度:是钢筋强度的设计依据,因为钢筋屈服后将发生很大的塑性变形,且卸载时这部分变形不可恢复,这会使钢筋混凝土构件产生很大的变形和不可闭合的裂缝。屈服上限与加载速度有关,不太稳定,一般取屈服下限作为屈服强度。延 伸 率:钢筋拉断后的伸长值与原长的比率,是反映钢筋塑性性能的指标。延伸率大的钢筋,在拉断前有足够预兆,延性较好。,屈 强 比:反映钢筋的强度储备

16、,fy/fu=0.60.7。,2.2 钢筋的物理力学性能,第二章 钢筋和混凝土的材料性能,有明显屈服点钢筋的应力-应变关系一般可采用双线性的理想弹塑性关系,2.2 钢筋的物理力学性能,第二章 钢筋和混凝土的材料性能,无明显屈服点的钢筋,a点:比例极限,约为0.65fua点前:应力-应变关系为线弹性a点后:应力-应变关系为非线性,有一定塑性变形,且没有明显的屈服点强度设计指标条件屈服点残余应变为0.2%所对应的应力规范取s0.2=0.85 fu,2.2 钢筋的物理力学性能,第二章 钢筋和混凝土的材料性能,1)强度:要求钢筋有足够的强度和适宜的强屈比(极限强度与屈服强度的比值)。例如,对抗震等级为

17、一、二级的框架结构,其纵向受力钢筋的实际强屈比不应小于1.25。2)塑性:要求钢筋应有足够的变形能力。3)可焊性:要求钢筋焊接后不产生裂缝和过大的变形,焊接接头性能良好。4)与混凝土的粘结力:要求钢筋与混凝土之间有足够的粘结力,以保证两者共同工作。,2.1.3 混凝土结构对钢筋性能的要求,2.2 钢筋的物理力学性能,第二章 钢筋和混凝土的材料性能,2.1 混凝土的物理力学性能,2.2 混凝土的物理力学性能混凝土的组成结构通常把混凝土的结构分为三种类型:.微观结构:也即水泥石结构,包括水泥凝胶、晶体骨架、未水化完的水泥颗粒和凝胶孔组成。.亚微观结构:即混凝土中的水泥砂浆结构。.宏观结构:即砂浆和

18、粗骨料两组分体系。注意:1.骨料的分布及骨料与基相之间在界面的结合强度是影响混凝土强度的重要因素;2.在荷载的作用下,微裂缝的扩展对混凝土的力学性能有着极为重要的影响。,第二章 钢筋和混凝土的材料性能,2.1 混凝土,单轴应力状态下的混凝土强度 混凝土结构中,主要是利用它的抗压强度。因此抗压强度是混凝土力学性能中最主要和最基本的指标。混凝土的强度等级是用抗压强度来划分的,2.1 混凝土的物理力学性能,2)轴心抗压强度,按标准方法制作的150mml50mm 300mm的棱柱体试件,在温度为20土3和相对湿度为90以上的条件下养护28d,用标准试验方法测得的具有95保证率的抗压强度。对于同一混凝土

19、,棱柱体抗压强度小于立方体抗压强度。考虑到实际结构构件制作、养护和受力情况,实际构件强度与试件强度之间存在差异,规范基于安全取偏低值,规定轴心抗压强度标准值和立方体抗压强度标准值的换算关系为:,2.1 混凝土的物理力学性能,式中:k为棱柱体强度与立方体强度之比,对不大于C50级的混凝土取0.76,对C80取0.82,其间按线性插值。k2为高强混凝土的脆性折减系数,对C40取1.0,对C80取0.87,中间按直线规律变化取值。0.88为考虑实际构件与试件混凝土强度之间的差异而取用的折减系数。,fcu,k立方体强度标准值即为混凝土强度等级fcu。,3)轴心抗拉强度,混凝土的轴心抗拉强度可以采用直接

20、轴心受拉的试验方法来测定,但由于试验比较困难,目前国内外主要采用圆柱体或立方体的劈裂试验来间接测试混凝土的轴心抗拉强度。,第二章 钢筋和混凝土的材料性能,2.1 混凝土的物理力学性能,混凝土结构设计规范规定轴心抗拉强度标准值与立方体抗压强度标准值的换算关系为:,混凝土轴心抗拉强度与立方体抗压强度的关系,在平面应力状态下,当两方向应力均为压应力时,抗压强度相互提高,最大可增加27,而当一方向为压应力,另一方向为拉应力时,强度相互降低。当压应力不太高时,其存在可提高混凝土的抗剪强度,拉应力的存在会降低混凝土的抗剪强度。剪应力的存在降低混凝土的抗压和抗拉强度。,侧向压应力的存在可提高混凝土的抗压强度

21、,关系为:式中 被约束混凝土的轴心抗压强度;非约束混凝土的轴心抗压强度;侧向约束压应力。侧向压应力的存在还可提高混凝土的延性。,(3)复合受力状态下混凝土的强度,第二章 钢筋和混凝土的材料性能,复杂应力下混凝土的受力性能,双轴应力状态,实际结构中,混凝土很少处于单向受力状态。更多的是处于双向或三向受力状态。,双向受压强度大于单向受压强度,最大受压强度发生在两个压应力之比为0.3 0.6之间,约(1.251.60)fc。双轴受压状态下混凝土的应力-应变关系与单轴受压曲线相似,但峰值应变均超过单轴受压时的峰值应变。,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,在一轴受压一轴受拉状

22、态下,任意应力比情况下均不超过其相应单轴强度。并且抗压强度或抗拉强度均随另一方向拉应力或压应力的增加而减小。,双轴应力状态,2.1 混凝土的物理力学性能,实际结构中,混凝土很少处于单向受力状态。更多的是处于双向或三向受力状态。,复杂应力下混凝土的受力性能,第二章 钢筋和混凝土的材料性能,构件受剪或受扭时常遇到剪应力t 和正应力s 共同作用下的复合受力情况。,混凝土的抗剪强度:随拉应力增大而减小 随压应力增大而增大当压应力在0.6fc左右时,抗剪强度达到最大,压应力继续增大,则由于内裂缝发展明显,抗剪强度将随压应力的增大而减小。,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,三轴

23、应力状态,三轴应力状态有多种组合,实际工程遇到较多的螺旋箍筋柱和钢管混凝土柱中的混凝土为三向受压状态。三向受压试验一般采用圆柱体在等侧压条件进行。,2.1 混凝土的物理力学性能,由试验得到的经验公式为:式中 被约束混凝土的轴心抗压强度;非约束混凝土的轴心抗压强度;侧向约束压应力。侧向压应力的存在还可提高混凝土的延性。,第二章 钢筋和混凝土的材料性能,2.1 混凝土,混凝土的变形1、单轴受压应力-应变关系,混凝土单轴受力时的应力-应变关系反映了混凝土受力全过程的重要力学特征,是分析混凝土构件应力、建立承载力和变形计算理论的必要依据,也是利用计算机进行非线性分析的基础。,混凝土单轴受压应力-应变关

24、系曲线,常采用棱柱体试件来测定。在普通试验机上采用等应力速度加载,达到轴心抗压强度fc时,试验机中集聚的弹性应变能大于试件所能吸收的应变能,会导致试件产生突然脆性破坏,只能测得应力-应变曲线的上升段。采用等应变速度加载,或在试件旁附设高弹性元件与试件一同受压,以吸收试验机内集聚的应变能,可以测得应力-应变曲线的下降段。,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,2.1 混凝土,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,2.2 混凝土,A点以前,微裂缝没有明显发展,混凝土的变形主要弹性变形,应力-应变关系近似直线。A点应力随混凝土强度的提高而增加,对普通强

25、度混凝土sA约为(0.30.4)fc,对高强混凝土sA可达(0.50.7)fc。,A点以后,由于微裂缝处的应力集中,裂缝开始有所延伸发展,产生部分塑性变形,应变增长开始加快,应力-应变曲线逐渐偏离直线。微裂缝的发展导致混凝土的横向变形增加。但该阶段微裂缝的发展是稳定的。,混凝土在结硬过程中,由于水泥石的收缩、骨料下沉以及温度变化等原因,在骨料和水泥石的界面上形成很多微裂缝,成为混凝土中的薄弱部位。混凝土的最终破坏就是由于这些微裂缝的发展造成的。,达到B点,内部一些微裂缝相互连通,裂缝发展已不稳定,横向变形突然增大,体积应变开始由压缩转为增加。在此应力的长期作用下,裂缝会持续发展最终导致破坏。取

26、B点的应力作为混凝土的长期抗压强度。普通强度混凝土sB约为0.8fc,高强强度混凝土sB可达0.95fc以上。,达到C点fc,内部微裂缝连通形成破坏面,应变增长速度明显加快,C点的纵向应变值称为峰值应变 e 0,约为0.002。,纵向应变发展达到D点,内部裂缝在试件表面出现第一条可见平行于受力方向的纵向裂缝。,随应变增长,试件上相继出现多条不连续的纵向裂缝,横向变形急剧发展,承载力明显下降,混凝土骨料与砂浆的粘结不断遭到破,裂缝连通形成斜向破坏面。E点的应变e=(23)e 0,应力s=(0.40.6)fc。,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,2.1 混凝土,不同强度

27、混凝土的应力-应变关系曲线,强度等级越高,线弹性段越长,峰值应变也有所增大。但高强混凝土中,砂浆与骨料的粘结很强,密实性好,微裂缝很少,最后的破坏往往是骨料破坏,破坏时脆性越显著,下降段越陡。,2.1 混凝土的物理力学性能,2.1 混凝土,第二章 钢筋和混凝土的材料性能,Hognestad建议的应力-应变曲线,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,规范应力-应变关系,上升段:,下降段:,2.1 混凝土,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,2、混凝土的变形模量,弹性模量,变形模量,切线模量,2.1 混凝土,2.1 混凝土的物理力学性能,第二章 钢

28、筋和混凝土的材料性能,弹性模量测定方法,2.1 混凝土,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,2.1 混凝土,混凝土的收缩和徐变1、混凝土的收缩 混凝土在空气中硬化时体积会缩小,这种现象称为混凝土的收缩。收缩是混凝土在不受外力情况下体积变化产生的变形。当这种自发的变形受到外部(支座)或内部(钢筋)的约束时,将使混凝土中产生拉应力,甚至引起混凝土的开裂。混凝土收缩会使预应力混凝土构件产生预应力损失。,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,2.1 混凝土,影响因素 混凝土的收缩受结构周围的温度、湿度、构件断面形状及尺寸、配合比、骨料性质、水泥性质、混

29、凝土浇筑质量及养护条件等许多因素有关。(1)水泥的品种:水泥强度等级越高,制成的混凝土收缩越大。(2)水泥的用量:水泥用量多、水灰比越大,收缩越大。(3)骨料的性质:骨料弹性模量高、级配好,收缩就小。(4)养护条件:干燥失水及高温环境,收缩大。(5)混凝土制作方法:混凝土越密实,收缩越小。(6)使用环境:使用环境温度、湿度越大,收缩越小。(7)构件的体积与表面积比值:比值大时,收缩小。,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,2.1 混凝土,2、混凝土的徐变 混凝土在荷载的长期作用下,其变形随时间而不断增长的现象称为徐变。徐变对混凝土结构和构件的工作性能有很大影响。由于混

30、凝土的徐变,会使构件的变形增加,在钢筋混凝土截面中引起应力重分布,在预应力混凝土结构中会造成预应力的损失。混凝土的徐变特性主要与时间参数有关。,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,2.1 混凝土,在应力(0.5fc)作用瞬间,首先产生瞬时弹性应变eel(=si/Ec(t0),t0加荷时的龄期)。随荷载作用时间的延续,变形不断增长,前4个月徐变增长较快,6个月可达最终徐变的(7080)%,以后增长逐渐缓慢,23年后趋于稳定。,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,2.1 混凝土,记(t-t0)时间后的总应变为e c(t,t0),此时混凝土的收缩应

31、变为esh(t,t0),则徐变为,ecr(t,t0)=ec(t,t0)-e c(t0)-esh(t,t0)=ec(t,t0)-eel-esh(t,t0),2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,2.1 混凝土,如在时间t 卸载,则会产生瞬时弹性恢复应变eel。由于混凝土弹性模量随时间增大,故弹性恢复应变eel小于加载时的瞬时弹性应变 eel。再经过一段时间后,还有一部分应变eel可以恢复,称为弹性后效或徐变恢复,但仍有不可恢复的残留永久应变ecr,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,2.1 混凝土,影响因素内在因素是混凝土的组成和配比。骨料(ag

32、gregate)的刚度(弹性模量)越大,体积比越大,徐变就越小。水灰比越小,徐变也越小。环境影响包括养护和使用条件。受荷前养护(curing)的温湿度越高,水泥水化作用月充分,徐变就越小。采用蒸汽养护可使徐变减少(2035)%。受荷后构件所处的环境温度越高,相对湿度越小,徐变就越大。,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,2.1 混凝土,3、混凝土在荷载重复作用下的变形(疲劳变形),疲劳强度混凝土的疲劳强度由疲劳试验测定。采用100mm100mm300mm 或着150mm150mm450mm的棱柱体,把棱柱体试件承受200万次或其以上循环荷载而发生破坏的压应力值称为混凝

33、土的疲劳抗压强度。影响因素施加荷载时的应力大小是影响应力-应变曲线不同的发展和变化的关键因素,即混凝土的疲劳强度与重复作用时应力变化的幅度有关。在相同的重复次数下,疲劳强度随着疲劳应力比值的增大而增大。,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,2.1 混凝土,混凝土在荷载重复作用下的应力-应变关系,2.1 混凝土的物理力学性能,第二章 钢筋和混凝土的材料性能,2.3 混凝土与钢筋的粘结,2.3 混凝土与钢筋的粘结,粘结的意义粘结和锚固是钢筋和混凝土形成整体、共同工作的基础,钢筋与混凝土之间粘结应力示意图(a)锚固粘结应力(b)裂缝间的局部粘结应力,第二章 钢筋和混凝土的材

34、料性能,2.3 混凝土与钢筋的粘结,2.3 混凝土与钢筋的粘结,粘结力的形成光圆钢筋与变形钢筋具有不同的粘结机理,其粘结作用主要由三部分组成:()钢筋与混凝土接触面上的化学吸附作用力(胶结力)。一般很小,仅在受力阶段的局部无滑移区域起作用,当接触面发生相对滑移时,该力即消失。()混凝土收缩握裹钢筋而产生的摩阻力。()钢筋表面凹凸不平与混凝土之间产生的机械咬合作用力(咬合力)。对于光圆钢筋,这种咬合力来自于表面的粗糙不平。,第二章 钢筋和混凝土的材料性能,2.3 混凝土与钢筋的粘结,2.3 混凝土与钢筋的粘结,变形钢筋与混凝土之间的机械咬合作用主要是由于变形钢筋肋间嵌入混凝土而产生的。,变形钢筋

35、和混凝土的机械咬合作用,第二章 钢筋和混凝土的材料性能,2.3 混凝土与钢筋的粘结,2.3 混凝土与钢筋的粘结,粘结强度测试,第二章 钢筋和混凝土的材料性能,2.3 混凝土与钢筋的粘结,2.3 混凝土与钢筋的粘结,计算公式,式中N钢筋的拉力;钢筋的直径;粘结的长度。,第二章 钢筋和混凝土的材料性能,2.3 混凝土与钢筋的粘结,2.3 混凝土与钢筋的粘结,不同强度混凝土的粘结应力和相对滑移的关系,第二章 钢筋和混凝土的材料性能,2.3 混凝土与钢筋的粘结,2.3 混凝土与钢筋的粘结,影响粘结的因素影响钢筋与混凝土粘结强度的因素很多,主要有混凝土强度、保护层厚度及钢筋净间距、横向配筋及侧向压应力,

36、以及浇筑混凝土时钢筋的位置等。.光圆钢筋及变形钢筋的粘结强度都随混凝土强度等级的提高而提高,但不与立方体强度成正比。.变形钢筋能够提高粘结强度。.钢筋间的净距对粘结强度也有重要影响。,第二章 钢筋和混凝土的材料性能,2.3 混凝土与钢筋的粘结,2.3 混凝土与钢筋的粘结,影响粘结的因素.横向钢筋可以限制混凝土内部裂缝的发展,提高粘结强度。.在直接支撑的支座处,横向压应力约束了混凝土的横向变形,可以提高粘结强度。.浇筑混凝土时钢筋所处的位置也会影响粘结强度。,第二章 钢筋和混凝土的材料性能,2.3 混凝土与钢筋的粘结,2.3 混凝土与钢筋的粘结,钢筋的锚固与搭接保证粘结的构造措施(1)对不同等级

37、的混凝土和钢筋,要保证最小搭接长度和锚固长度;(2)为了保证混凝土与钢筋之间有足够的粘结,必须满足钢筋最小间距和混凝土保护层最小厚度的要求;(3)在钢筋的搭接接头内应加密箍筋;(4)为了保证足够的粘结在钢筋端部应设置弯钩;(5)对大深度混凝土构件应分层浇筑或二次浇捣;(6)一般除重锈钢筋外,可不必除锈。,第二章 钢筋和混凝土的材料性能,2.3 混凝土与钢筋的粘结,2.3 混凝土与钢筋的粘结,钢筋的搭接钢筋搭接的原则是:接头应设置在受力较小处,同一根钢筋上应尽量少设接头,机械连接接头能产生较牢固的连接力,应优先采用机械连接。,受拉钢筋绑扎搭接接头的搭接长度计算公式:,式中,为受拉钢筋搭接长度修正

38、系数,它与同一连接区内搭接钢筋的截面面积有关,详见规范。,第二章 钢筋和混凝土的材料性能,2.3 混凝土与钢筋的粘结,2.3 混凝土与钢筋的粘结,基本锚固长度钢筋的基本锚固长度取决于钢筋的强度及混凝土抗拉强度,并与钢筋的外形有关。规范规定纵向受拉钢筋的锚固长度作为钢筋的基本锚固长度,其计算公式为:,2.3 砌体结构,Masonry Structure,0.2 砌体结构类型,一.无筋砌体结构1.砖砌体结构实砌体、空斗砌体2.砌块砌体结构3.石砌体结构料石砌体和毛石砌体二.配筋砌体结构1.网状配筋砖砌体2.组合配筋砖砌体3.配筋砼砌块砌体三.大型墙板结构,第一章 砌体的物理力学性能,1.1材料强度

39、等级1.1.1 砖石材料砖石材料一般分为天然石材和人工砖石两类;天然石材:当自重大于18N/m3的称为重石,如 花岗石、石灰石、砂石等;当自重小于18N/m3的称为轻石,如 凝灰石、贝壳灰岩等;重石材由于强度大,抗冻性、抗水性、抗汽性均较好,通常用于建筑物的基础和挡土墙等;人工砖石:经过烧结的普通砖、粘土空心砖、陶土空心砖;以及不经过烧结的硅酸盐砖、矿渣砖、混凝土砌块、土坯等。,普通粘土砖全国统一规格:240 x115x53,具有这种尺寸的砖称为标准砖;空心砖分为三种型号:KP1(240 x115x90)、KP2(240 x180 x115)、KM1(190 x190 x90)。前两种可以与标

40、准砖混砌;块体的强度等级:烧结普通砖、烧结多孔砖:MU30、MU25、MU20、MU15、MU10;蒸压灰砂砖、蒸压粉煤灰砖:MU25、MU20、MU15、MU10;块体的强度等级:MU20、MU15、MU10、MU7.5、MU5;石材的强度等级:MU100、MU80、MU60、MU50、MU40、MU30、MU20,块体(Masonry Unit)的缩写;,1.1.4 砂浆,砂浆是由砂、矿物胶结材料与水按合理配比经搅拌而制成的;砌体结构对砂浆的基本要求:强度、可塑性(流动性)、保水性;砂浆的强度等级:边长为70毫米的立方体试块在150C-250C的室内自然条件下养护24小时,拆模后再在同样的

41、条件下养护28天,加压所测得的抗压强度极限值;砂浆的强度等级:M15、M10、M7.5、M5、M2.5,其中M表示Mortar的缩写;砂浆的分类:水泥砂浆、混合砂浆(如水泥石灰砂浆、水泥粘土砂浆)、非水泥砂浆(如环氧树脂砂浆);,1.1.7 砖石和砂浆的选择,强度的要求;耐久性的要求:耐久性不足时,经冻融循环后会引起砖石剥落和强度降低;地面以下或防潮层以下的砂浆的最低强度要求:,砖石和砂浆最低强度等级要求,破坏三个阶段:50-70%-单砖出现裂缝;80-90%-个别裂缝连成几皮砖通缝;90%以上砌体裂成相互不连接的 小立柱,最终被压碎或上失稳定而破坏;,1.2 砌体的受压性能,1.2.1 砌体

42、受压的破坏特征,为什么有时砌体的强度高于砂浆的强度?,1砂浆表面不平整:块体不仅受压而且受弯和剪;2 竖向受压时,产生横向变形:砂浆的变形比砖大,由于粘接力的存在,砂浆横向受压,砌块横向受拉。砂浆强度提高(套箍作用);3 砌体的灰缝不可能充满:截面面积有所减少;在垂直裂缝截面上的砖内产生横向拉应力和剪应力的应力集中,引起砌体结构的降低。,1.2.2 影响砌体抗压强度的主要因素,1 砖和砂浆的强度:一般情况下,砌体强度随砖和砂浆强度的提高而提高;2 砂浆的弹塑性性质:砂浆强度越低,变形越大,转受到的拉应力和剪应力也越大,砌体强度也越低;3 砂浆铺砌时的流动性:流动性越大,灰缝越密实,可降低砖的弯

43、剪应力;但流动性过大,会增加灰缝的变形能力,增加砖的拉应力;4 砖的形状和灰缝厚度:灰缝平整、均匀、等厚可以减小弯剪应力;方便施工的条件下,砌块越大越好;5 砌筑质量,1.2.3 砌体的抗压强度表达式,1 砌体的抗压强度平均值:对于MU20的砌体适当降低强度值;f1和f2分别为砌块和砂浆的强度;2 单排孔混凝土砌块对孔砌筑时,灌孔砌体的抗压强度设计值:Fg,m灌孔砌体的强度设计值;fm未灌孔砌体的抗压强度设计值;fcu,m灌孔混凝土的轴心抗压强度设计值;为砌块砌体中混凝土灌孔混凝土面积和砌体毛面积的比值;为混凝土砌块的孔洞率;为混凝土砌块的灌孔率,不应小于33%,1.4 砌体的受剪性能,砌体的

44、抗压性能要比抗拉、抗弯和抗剪好的多。但工程中也会遇到受拉、受剪情况。砌体受拉、受弯和受剪破坏可能发生三种破坏:沿齿缝(灰缝)的破坏,沿砖石和竖向灰缝的破坏,沿通缝(灰缝)的破坏。砌体抗拉、弯曲抗拉及抗剪强度主要取决于灰缝的强度;粘接力分为:法向粘接力和切向粘接力两种。,1 砌体的抗拉强度:不允许出现沿通缝截面的受拉构件,(如图C)。水平受拉时,可能沿齿缝破坏(如图B),也可能沿砖和竖向灰缝破坏(如图A),2 砌体的弯曲抗拉破坏:在竖向弯曲时,应采用沿通缝的抗拉强度;当在水平方向上弯曲时,可能有两种破坏形式:沿齿缝截面和沿竖向灰缝截面。取两种强度较小的计算。,3 砌体受剪强度 砌体常见的受剪工作是沿通缝截面或沿阶梯形截面。,对于各类砌体的拉、弯、剪强度平均值采用统一的计算公式。,系数k可以查表。1.6 砌体的弹性模量根据国内外资料,砌体的应力和应变关系曲线为:为与砂浆强度和块体品种有关的系数弹性模量的定义为:,在实际工程中,按 时的变形模量为砌体的弹性模量。砌体的弹性模量,f是砌体抗压强度设计值。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号