生物化学(合工大)第八章糖代谢.ppt

上传人:牧羊曲112 文档编号:6181488 上传时间:2023-10-02 格式:PPT 页数:118 大小:3.18MB
返回 下载 相关 举报
生物化学(合工大)第八章糖代谢.ppt_第1页
第1页 / 共118页
生物化学(合工大)第八章糖代谢.ppt_第2页
第2页 / 共118页
生物化学(合工大)第八章糖代谢.ppt_第3页
第3页 / 共118页
生物化学(合工大)第八章糖代谢.ppt_第4页
第4页 / 共118页
生物化学(合工大)第八章糖代谢.ppt_第5页
第5页 / 共118页
点击查看更多>>
资源描述

《生物化学(合工大)第八章糖代谢.ppt》由会员分享,可在线阅读,更多相关《生物化学(合工大)第八章糖代谢.ppt(118页珍藏版)》请在三一办公上搜索。

1、第八章 糖代谢-Metabolism,一、糖代谢总论二、多糖和寡聚糖的酶促降解三、糖的无氧降解及厌氧发酵四、葡萄糖的有氧分解代谢五、磷酸戊糖途径六、糖异生七、糖原代谢八、乙醛酸循环,一、糖代谢总论,糖代谢包括分解代谢和合成代谢。动物和大多数微生物所需的能量,主要是由糖的分解代谢提供的。另方面,糖分解的中间产物,又为生物体合成其它类型的生物分子,如氨基酸、核苷酸和脂肪酸等,提供碳源或碳链骨架。植物和某些藻类能够利用太阳能,将二氧化碳和水合成糖类化合物,即光合作用。光合作用将太阳能转变成化学能(主要是糖类化合物),是自然界规模最大的一种能量转换过程。,糖与多糖,糖类物质是一类多羟基醛或多羟基酮类化

2、合物或聚合物;糖类物质可以根据其水解情况分为:单糖、寡糖和多糖;在生物体内,糖类物质主要以均一多糖、杂多糖、糖蛋白和蛋白聚糖形式存在。,重要的己糖包括:葡萄糖、果糖、半乳糖、甘露糖等。,-D-吡喃葡萄糖,-D-吡喃半乳糖,1.单糖的结构,-D-吡喃甘露糖,-D-呋喃果糖,蔗糖,2.寡糖(二糖),葡萄糖-,(12)果糖苷,葡萄糖-(14)半乳糖苷,乳 糖,麦芽糖,(1)淀粉(分为直链淀粉和支链淀粉)直链淀粉分子量约1万-200万,250-260个葡萄糖分子,以(14)糖苷键聚合而成。呈螺旋结构,遇碘显紫蓝色。支链淀粉中除了(14)糖苷键构成糖链以外,在支点处存在(16)糖苷键,分子量较高。遇碘显

3、紫红色。,3.多糖,(2)纤维素由葡萄糖以(14)糖苷键连接而成的直链,不溶于水。(3)几丁质(壳多糖)N-乙酰-D-葡萄糖胺,以(14)糖苷键缩合而成的线性均一多糖。(4)杂多糖糖胺聚糖(粘多糖、氨基多糖等)透明质酸硫酸软骨素硫酸皮肤素硫酸角质素肝素,糖原,二、多糖和寡聚糖的酶促降解,概述 多糖和寡聚糖只有分解成小分子后才能被吸收利用,生产中常称为糖化。2.淀粉3.淀粉水解 淀粉 糊精 寡糖 麦芽糖 G,淀粉的酶促水解:水解淀粉的淀粉酶有与淀粉酶,二者只能水解淀粉中的-1,4糖苷键,水解产物为麦芽糖。-淀粉酶可以水解淀粉(或糖原)中任何部位的-1,4糖键。淀粉酶只能从非还原端开始水解。水解淀

4、粉中的-1,6糖苷键的酶是-1,6糖苷键酶。淀粉水解的产物为糊精和麦芽糖的混合物。,还原末端,非还原末端,-1,4糖苷键,-1,6糖苷键,三、糖的无氧降解及厌氧发酵,糖酵解途径(glycolysis)(Embden Meyerhof Parnas EMP),(一)定义:在无氧的条件下,葡萄糖或糖原分解成丙酮酸,并释放少量能量的过程称为糖的无氧分解。这一过程与酵母菌使糖发酵的过程相似,又称为糖酵解,简称EMP途径。,(二)反应部位:细胞液(胞浆),(三)EMP途径的生化历程三个阶段,1、葡萄糖的磷酸化,第一阶段:,葡萄糖 6-磷酸葡萄糖,ATP,ATP,ATP,ADP,ADP,P,P,己糖激酶是

5、糖酵解途径的第一个关键酶,2、磷酸己糖异构化,P,3、1,6-二磷酸果糖的生成,磷酸果糖激酶是糖酵解途径的第二个关键酶,并且是限速酶,ATP,ATP,ADP,P,ADP,4、1,6-二磷酸果糖的裂解,第二阶段:,1,6-二磷酸果糖,磷酸二羟丙酮,3-磷酸甘油醛,5、磷酸丙糖的同分异构化,相当于1,6-二磷酸果糖裂解为两分子的3-磷酸甘油醛。,6、3-磷酸甘油醛氧化为1,3-二磷酸甘油酸,第三阶段:,P,+NAD+Pi,+NADH+H+,3-磷酸甘油醛,1,3-二磷酸甘油酸,这是糖酵解过程中唯一一步脱氢反应,7、高能磷酸基团的转移,糖酵解中第一次底物水平磷酸化,1分子葡萄糖产生2分子ATP。,+

6、ADP,+ATP,ATP,8、3-磷酸甘油酸异构为2-磷酸甘油酸,9、磷酸烯醇式丙酮酸的生成,10、丙酮酸的生成,糖酵解中第二次底物水平磷酸化,丙酮酸激酶是第三个关键酶,1分子葡萄糖产生2分子ATP。,ADP,ATP,ATP,自发反应,2ATP,2ATP,3-磷酸甘油醛,1,3-二磷酸甘油酸,3-磷酸甘油酸,2-磷酸甘油酸,磷酸烯醇式丙酮酸,丙酮酸,烯醇式丙酮酸,丙酮酸激酶,丙酮酸激酶,2ADP,烯醇化酶,磷酸甘油酸变位酶,磷酸甘油酸 激 酶,磷酸甘油酸脱氢 酶,NAD+Pi,NADH+H+,2ATP,2ADP,2ATP,糖酵解分为三个阶段,第一阶段:葡萄糖的磷酸化葡萄糖,3步,1,6二磷酸果

7、糖,第二阶段:糖的裂解阶段,1,6二磷酸果糖,两分子的磷酸丙糖,2步,第三阶段:产能阶段,两分子的3磷酸甘油醛,两分子丙酮酸,5步,(四)糖酵解的反应特点,1、整个过程无氧参加;2、三个关键酶;3、从葡萄糖开始净生成2分子ATP,从糖原开始净生成3分子ATP;4、一次脱氢,辅酶为NAD,生成NADHH。,总反应式:G+2NAD+2ADP+2Pi 2丙酮酸+2NADH+2H+2ATP+2H2O,2.丙酮酸的去路,(有氧),(无氧),(一)丙酮酸的无氧还原,(2)酒精发酵(alcoholic fermation),酵母菌,焦磷酸硫胺素(TPP),糖的无氧降解及厌氧发酵总图,(二)丙酮酸的氧化脱羧乙

8、酰CoA的生成,基本反应:糖酵解生成的丙酮酸可穿过线粒体膜进入线粒体基质,在丙酮酸脱氢酶系的催化下,生成乙酰辅酶A。,细胞呼吸最早释放的CO2,丙酮酸脱氢酶系:这一多酶复合体位于线粒体内膜上,原核细胞则在胞液中。,丙酮酸脱氢酶系,三种酶,六种辅助因子,E1-丙酮酸脱羧酶(也叫丙酮酸脱氢酶)E2-二氢硫辛酸乙酰基转移酶E3-二氢硫辛酸脱氢酶。,焦磷酸硫胺素(TPP)、硫辛酸、COASH、FAD、NAD+、Mg2+,其它糖进入单糖分解的途径,半乳糖,半乳糖-1-P,UDP-半乳糖,UDP-葡萄糖,葡萄糖-1-磷酸,糖原或淀粉,葡萄糖,葡萄糖-6-磷酸,果糖,葡萄糖,果糖-6-磷酸,果糖-1、6-磷

9、酸,磷酸二羟丙酮,3-磷酸甘油,甘油,3-磷酸甘油醛,进入糖酵解,甘露糖,甘露糖-6-磷酸,ATP,ADP,Pi,UTP,PPi,四、葡萄糖的有氧分解代谢,(一)定义:葡萄糖在有氧的条件下彻底氧化生成CO2、H2O和大量ATP的代谢过程,称为糖的有氧氧化。(二)反应部位:线粒体基质,反应从乙酰辅酶A与草酰乙酸缩合成含有三个羧基的柠檬酸开始,所以称为柠檬酸循环,又称为TCA循环或Krebs循环。,糖的无氧氧化与有氧氧化的关系,线粒体基质,细胞液,CoASH,+CO2,+CO2,三羧酸循环(TCA),草酰乙酸 再生阶段,柠檬酸的生成阶段,氧化脱 羧阶段,柠檬酸,异柠檬酸,顺乌头酸,酮戊二酸,琥珀酸

10、,琥珀酰CoA,延胡索酸,苹果酸,草酰乙酸,NAD+,NAD+,FAD,NAD+,(三)三羧酸循环的反应过程,(1)缩合反应(2)柠檬酸异构化生成异柠檬酸(3)异柠檬酸氧化脱羧生成-酮戊二酸(4)-酮戊二酸氧化脱羧生成琥珀酰CoA(5)琥珀酰CoA生成琥珀酸(6)琥珀酸脱氢生成延胡索酸(7)延胡索酸加水生成苹果酸(8)草酰乙酸的再生,TCA第一阶段:柠檬酸生成,草酰乙酸,柠檬酸合成酶,顺乌头酸酶,CH3,CSCoA+,O,O,CCOOH,CH2COOH,柠檬酸合成酶,HO,CCOOH,CH2COOH,CH2COOH,HSCoA,H2O,柠檬酸合酶,乙酰CoA,草酰乙酸,柠檬酸,HSCoA,(1

11、)缩 合 反 应,柠檬酸合酶是三羧酸循环的第一个限速酶,H2O,(2)柠檬酸异构化为异柠檬酸,HO,CCOOH,CHCOOH,CH2COOH,H,CCOOH,CHCOOH,CHCOOH,CHCOOH,CH2COOH,CH2COOH,HO,H2O,H2O,顺乌头酸酶,顺乌头酸酶,HO,H,H2O,HO,H,H2O,柠檬酸,顺乌头酸,异柠檬酸,TCA第二阶段:氧化脱羧,HO,H,(3)异柠檬酸氧化生成-酮戊二酸,CHCOOH,CHCOOH,CH2COOH,CCOOH,CHCOOH,CH2COOH,HO,异柠檬酸,H,O,CH2,CHCOOH,CH2COOH,O,H,COO,NAD+,NADH+H+

12、,异柠檬酸脱氢酶,CO2,CO2,草酰琥珀酸,-酮戊二酸,这是三羧酸循环的第一次氧化脱羧反应,异柠檬酸脱氢酶是第二个限速酶。,异柠檬酸脱氢酶,异柠檬酸脱氢酶,(4)-酮戊二酸氧化脱羧反应,CH2,CCOOH,CH2COOH,O,-酮戊二酸,CH2,CH2,COOH,+,HSCoA,COSCoA,琥珀酰CoA,NAD+,NADH+H+,CO2,-酮戊二酸脱氢酶复合体,-酮戊二酸脱氢酶复合体,这是三羧酸循环的第二次氧化脱羧反应,-酮戊二酸脱氢酶复合体是第三个限速酶。,COO,CO2,H,H,-酮戊二酸脱氢酶复合体包括:1、-酮戊二酸脱氢酶E1 2、琥珀酰转移酶E2 3、二氢硫辛酸脱氢酶E3 4、六

13、个辅助因子,(5)琥珀酸的生成,CH2,CH2,COOH,COSCoA,琥珀酰CoA,GDP+Pi+,GTP,CoASH,CH2COOH,CH2COOH,琥珀酸,琥珀酰CoA合成酶,这是三羧酸循环的唯一一次底物水平磷酸化。,GTP,TCA第三阶段:草酰乙酸再生,草酰乙酸,琥珀酸脱氢酶,延胡索酸酶,苹果酸脱氢酶,H,H,(6)延胡索酸的生成,CHCOOH,CHCOOH,琥珀酸,+FAD,CHCOOH,CHCOOH,H,H,+FADH2,H2,延胡索酸,琥珀酸脱氢酶,HO,H,H2O,(7)苹果酸的生成,CHCOOH,CHCOOH,延胡索酸,H2O,CHCOOH,CHCOOH,延胡索酸酶,苹果酸,

14、+,(8)草酰乙酸的再生,CHCOOH,CCOOH,苹果酸,O,CCOOH,CH2COOH,草酰乙酸,NAD+,NADH+H+,H,苹果酸脱氢酶,琥珀酰CoA,CO2,三羧酸循环,ATP,三羧酸循环过程总结(一次循环)8步反应8种酶催化反应类型缩合1、脱水1、氧化4、底物水平磷酸化1、水化3生成3分子还原型NADH生成1分子FADH2生成1分子ATP,三羧循环的化学计量和能量计量,a、总反应式:CH3COSCoA+3NAD+FAD+GDP+Pi+2H2O 2CO2+CoASH+3NADH+3H+FADH2+GTP,(四)反应特点,1、需氧2、不可逆:三个限速酶3、两次脱羧、四次脱氢(三次受体是

15、NAD,一次是FAD)、一次底物水平磷酸化4、共产生12molATP,(五)生理意义,1.普遍存在2.生物体获得能量的最有效方式3.是糖类、蛋白质、脂肪三大物质转化的枢纽4.获得微生物发酵产品的途径 柠檬酸、谷氨酸,葡萄糖完全氧化产生的ATP,总计:38 ATP 或 36 ATP,(六)丙酮酸羧化支路(回补途径),三羧酸循环不仅是产生ATP的途径,它产生的中间产物也是生物合成的前体。例如卟啉的主要碳原子来自琥珀酰CoA,谷氨酸、天冬氨酸是从-酮戊二酸、草酰乙酸衍生而成。一旦草酰乙酸浓度下降,势必影响三羧酸循环的进行。,1.丙酮酸在丙酮酸羧化酶催化下形成草酰乙酸,需要生物素为辅酶。,2、磷酸烯醇

16、式丙酮酸在磷酸烯醇式丙酮酸羧激酶的催化下形成草酰乙酸。,3、丙酮酸在苹果酸酶的催化下形成苹果酸,再由 TCA途径生成草酰乙酸。,+NADPH+H+,苹果酸酶,4.天冬氨酸及谷氨酸的转氨作用可以形成草酰乙酸和-酮戊二酸。异亮氨酸、缬氨酸、苏氨酸和甲硫氨酸也会形成琥珀酰CoA。其反应将在氨基酸代谢中讲述。,PEP羧激酶,三羧酸循环不仅是各种有机物质氧化分解的共同途径、释放能量最多的氧化分解阶段,而且架起了三大类物质相互转化、相互联系的桥梁。,写出三羧酸循环的反应过程,标出脱羧、脱氢、产能部位,指出限速酶。,小结:,(一)定义:从6磷酸葡萄糖开始,不经糖酵解和柠檬酸循环,直接将其脱氢脱羧分解为磷酸戊

17、糖,磷酸戊糖分子再经重排最终又生成6磷酸葡萄糖的过程,或称为磷酸己糖旁路,简称HMP途径。,五、磷酸戊糖途径,参与磷酸戊糖途径的酶类都分布在动物细胞浆中,动物体中约有30%的葡萄糖通过此途径分解。,(二)反应历程:可分为两个阶段 第一阶段 氧化阶段:由6磷酸葡萄糖直接脱氢脱 羧生成磷酸戊糖;第二阶段 非氧化阶段:磷酸戊糖分子再经重排最终 又生成6磷酸葡萄糖。,(1)G-6-P脱氢脱羧转化成5-磷酸核酮糖,(2)磷酸戊糖的异构化,(3)磷酸戊糖通过转酮及转醛反应生成酵解途径的中间产物6-磷酸果糖和3-磷酸甘油醛。,(三)磷酸戊糖途径的主要特点:1、是6-磷酸葡萄糖直接脱氢脱羧,不必经过 EMP,

18、也不必经过TCA;2、在整个反应中,脱氢酶的辅酶为NADP+而 不是NAD+;3、反应过程中进行了一系列酮基和醛基转移 反应,经过了3、4、5、6、7碳糖的演变过 程。磷酸戊糖经复杂的转化重新生成磷酸 己糖。,(四)磷酸戊糖途径的生理意义:,1、生成的5磷酸核糖是合成核酸及核苷 酸辅酶的必要原料;2、NADPHH作为供氢体,参与体内许 多重要的还原性代谢反应。,六、糖异生,糖异生是指从非糖物质合成葡萄糖的过程。非糖物质包括丙酮酸、乳酸、生糖氨基酸、甘油等均可以在哺乳动物的肝脏中转变为葡萄糖或糖原。这一过程基本上是糖酵解途径的逆过程,但具体过程并不是完全相同,因为在酵解过程中有三步是不可逆的反应

19、,而在糖异生中要通过其它的旁路途径来绕过这三步不可逆反应,完成糖的异生过程。,用整体动物做实验,禁食24小时,大鼠肝脏中的糖原由7%降低到1%,饲喂乳酸、丙酮酸或三羧酸循环代谢的中间物后可以使大鼠肝糖原增加。,糖异生的证据如下:,(一)定义:由非糖物质转变为葡萄糖或糖原的过程 称为糖异生作用。,(二)糖异生的部位:主要在肝脏,其次是肾脏。,(三)糖异生的反应历程:基本上是糖酵解的逆过程。,主要在肝、肾细胞的胞浆及线粒体,糖 异 生,糖酵解与糖异生的关系图,糖异生途径关键反应之一,糖异生途径关键反应之二,糖异生途径关键反应之三,糖酵解和葡萄糖异生反应部位,A G-6-P磷酸酯酶B F-1.6-P

20、磷酸酯酶C1 丙酮酸羧化酶C2 PEP羧激酶,(胞液),(线粒体),葡萄糖,丙酮酸,草酰乙酸,天冬氨酸,磷酸二羟丙酮,3-P-甘油醛,-酮戊二酸,乳酸,谷氨酸,丙氨酸,TCA循环,乙酰CoA,PEP,G-6-P,F-6-P,F-1.6-P,丙酮酸,草酰乙酸,谷氨酸,-酮戊二酸,天冬氨酸,3-P-甘油,甘油,苹果酸,苹果酸,(四)糖异生途径的前体,1、凡是能生成丙酮酸的物质都可以变成葡萄糖。例如三羧酸循环的中间物,柠檬酸、异柠檬酸、-酮戊二酸、琥珀酸、延胡索酸和苹果酸都可以转变成草酰乙酸而进入糖异生途径。,2、大多数氨基酸是生糖氨基酸如丙氨酸、谷氨酸、天冬氨酸、丝氨酸、半胱氨酸、甘氨酸、精氨酸、

21、组氨酸、苏氨酸、脯氨酸、谷胺酰胺、天冬酰胺、甲硫氨酸、缬氨酸等,它们可转化成丙酮酸、-酮戊二酸、草酰乙酸等三羧酸循环中间物参加糖异生途径。,3、Cori循环:剧烈运动时产生的大量乳酸会迅速扩散到血液,随血流流至肝脏,先氧化成丙酮酸,再经过糖异生作用转变为葡萄糖,进而补充血糖,也可重新合成肌糖原被贮存起来。这一乳酸葡萄糖的循环过程称为Cori循环。,4、反刍动物糖异生途径十分活跃,牛胃中的细菌分解纤维素成为乙酸、丙酸、丁酸等,可转变成为琥珀酰CoA参加糖异生途径合成葡萄糖。,糖异生作用的总反应式如下:2丙酮酸+4ATP+2GTP+2NADH+2H+4H2O 葡萄糖+2NAD+4ADP+2GDP+

22、6Pi,(五)糖异生的意义:,(一)维持血糖浓度恒定,(二)补充肝糖原,三碳途径:指进食后,大部分葡萄糖先在肝外细胞中分解为乳酸或丙酮酸等三碳化合物,再进入肝细胞异生为糖原的过程。,(三)调节酸碱平衡(乳酸异生为糖),(六)乳酸循环(lactose cycle)(Cori 循环),循环过程,葡萄糖,葡萄糖,葡萄糖,丙酮酸,乳酸,乳酸,乳酸,丙酮酸,血液,生理意义,乳酸再利用,避免了乳酸的损失。,防止乳酸的堆积引起酸中毒。,乳酸循环是一个耗能的过程,2分子乳酸异生为1分子葡萄糖需6分子ATP。,七、糖原的代谢,糖原结构示意图,糖原部分结构式,是动物体内糖的储存形式之一,是机体能迅速动用的能量储备

23、。,糖 原(glycogen),糖原储存的主要器官及其生理意义,1.糖原的合成(一)定义:葡萄糖、半乳糖和果糖等在体内相应酶的作用下合成糖原的过程。(二)合成部位:,组织定位:主要在肝脏、肌肉细胞定位:胞液,1.葡萄糖磷酸化生 成 6-磷酸葡萄糖,葡萄糖,6-磷酸葡萄糖,(三)糖原合成途径,2.6-磷酸葡萄糖转变 成1-磷酸葡萄糖,这步反应中磷酸基团转移的意义在于:由于延长形成-1,4-糖苷键,所以葡萄糖分子C1上的半缩醛羟基必须活化,才利于与原来的糖原分子末端葡萄糖的游离C4羟基缩合。,半缩醛羟基与磷酸基之间形成的O-P键具有较高的能量。,*UDPG可看作“活性葡萄糖”,在体内充作葡萄糖供体

24、。,+,3.1-磷酸葡萄糖转变 成 尿苷二磷酸葡萄糖,1-磷酸葡萄糖,尿苷二磷酸葡萄糖(uridine diphosphate glucose,UDPG),4.-1,4-糖苷键式结 合,*糖原n 为原有的细胞内的较小糖原分子,称为糖原引物(primer),作为UDPG 上葡萄糖基的接受体。,5.糖原分枝的形成,分 支 酶,(branching enzyme),近来人们在糖原分子的核心发现了一种名为glycogenin的蛋白质。Glycogenin可对其自身进行共价修饰,将UDP-葡萄糖分子的C1结合到其酶分子的酪氨酸残基上,从而使它糖基化。这个结合上去的葡萄糖分子即成为糖原合成时的引物。,糖原

25、合成过程中作为引物的第一个糖原分子从何而来?,(四)糖原合成的特点:,1、反应部位2、糖原合成酶是关键酶3、需要糖原引物4、每加上一个葡萄糖残基消耗2分子ATP,(五)糖原合成的意义:,1、有效地调节血糖浓度 2、合理地贮存能源,2.糖原的分解,(一)定义:糖原分解主要是指肝糖原分解为 葡萄糖的过程。,(三)糖原分解的历程,1.糖原的磷酸解,(二)反应部位:胞浆和内质网内腔面,2.脱枝酶的作用,转移葡萄糖残基水解-1,6-糖苷键,转移酶活性,3.1-磷酸葡萄糖转变成6-磷酸葡萄糖,4.6-磷酸葡萄糖水解生成葡萄糖,糖原的合成与分解总图,*肌糖原的分解,肌糖原分解的前三步反应与肝糖原分解过程相同

26、,但是生成6-磷酸葡萄糖之后,由于肌肉组织中不存在葡萄糖-6-磷酸酶,所以生成的6-磷酸葡萄糖不能转变成葡萄糖释放入血,提供血糖,而只能进入酵解途径进一步代谢。肌糖原的分解与合成与乳酸循环有关。,G-6-P的代谢去路,G(补充血糖),G-6-P,F-6-P(进入酵解途径),G-1-P,Gn(合成糖原),UDPG,6-磷酸葡萄糖内酯(进入磷酸戊糖途径),小 结,(四)糖原分解反应的特点:,1、糖原磷酸化酶是关键酶2、分解过程不消耗ATP3、肌糖原不能直接分解为游离的葡萄糖,(五)反应意义:,肝糖原分解不仅可以氧化供能,而且可以分解为游离的葡萄糖维持血糖恒定;肌糖原是肌肉收缩时的主要供能物质,可经

27、糖酵解途径转化为乳酸,经血液循环到肝脏,转变为肝糖原或葡萄糖,对血糖的调节起间接作用。,糖原积累症,糖原累积症(glycogen storage diseases)是一类遗传性代谢病,其特点为体内某些器官组织中有大量糖原堆积。引起糖原累积症的原因是患者先天性缺乏与糖原代谢有关的酶类。,血糖水平恒定的生理意义,保证重要组织器官的能量供应,特别是某些依赖葡萄糖供能的组织器官。正常血糖浓度:3.89-6.11mmol/L,脑组织不能利用脂肪酸,正常情况下主要依赖葡萄糖供能;红细胞没有线粒体,完全通过糖酵解获能;骨髓及神经组织代谢活跃,经常利用葡萄糖供能。,糖原积累症分型,八、乙醛酸循环,(一)乙醛酸

28、循环反应历程,(二)乙醛酸循环和三羧酸循环反应历程的比较,(三)乙醛酸循环的的特点,(四)乙醛酸循环的生理意义,CoASH,柠檬酸合成酶,顺乌头酸酶,(一)乙醛酸循环反应历程,NAD+,NADH,苹果酸脱氢酶,草酰乙酸,CoASH,OCH3-CSCoA,异柠檬酸裂解酶,苹果酸合酶,O OH-C-C OH,乙醛酸,NAD+,草酰乙酸,CoASH,(二)乙 醛 酸 循 环 和 三 羧 酸 循 环 反 应 历 程 的 比 较,柠檬酸,异柠檬酸,顺乌头酸,酮戊二酸,琥珀酸,琥珀酰CoA,草酰乙酸,苹果酸,延胡索酸,TCA循环,乙醛酸循环,(三)乙醛酸循环的的特点,只存在于植物(种子)和微生物中;其实质是使乙酰CoA转变为草酰乙酸,再异生成葡萄糖;关键酶是异柠檬酸裂解酶和苹果酸合酶。,(四)乙醛酸循环的生理意义,植物种子萌发时脂肪转化为葡萄糖供能!,本章重点:,1.糖的酵解2.三羧酸循环3.磷酸戊糖途径4.糖异生5.糖原代谢6.乙醛酸循环 掌握各途径关键步骤的反应、关键酶、代谢特点和生理意义。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号