商务统计学Ch.ppt

上传人:牧羊曲112 文档编号:6253676 上传时间:2023-10-10 格式:PPT 页数:74 大小:656KB
返回 下载 相关 举报
商务统计学Ch.ppt_第1页
第1页 / 共74页
商务统计学Ch.ppt_第2页
第2页 / 共74页
商务统计学Ch.ppt_第3页
第3页 / 共74页
商务统计学Ch.ppt_第4页
第4页 / 共74页
商务统计学Ch.ppt_第5页
第5页 / 共74页
点击查看更多>>
资源描述

《商务统计学Ch.ppt》由会员分享,可在线阅读,更多相关《商务统计学Ch.ppt(74页珍藏版)》请在三一办公上搜索。

1、Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-1,第12章一元线性回归,商务统计学(第5版),Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-2,学习目标,在本章中你将学到:如何利用一元线性回归分析理论,由自变量来预测因变量回归系数 b0 和 b1的含义如何评价一元线性回归分析的假设条件,并且了解假设违背时的处理方法斜率和相关系数的推断均值估计和个值预测,Business Statistics:A First

2、Course,5e 2009 Prentice-Hall,Inc.,Chap 12-3,相关与回归,一个 散点图 可以用来表示两个变量之间的关系相关性 分析是用来测量两个变量之间的关联(线性关系)强度相关性仅仅是关心关联的强度没有因果关系是隐含相关性散点图首次出现在第2章相关性首次出现在第3章,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-4,回归分析简介,回归分析被应用于:基于至少一个自变量的值,预测因变量的值解释一个自变量的变化对因变量的影响因变量:我们要预测或解释的变量自变量:用来预测或解释因变

3、量的变量,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-5,一元线性回归模型,只有一个自变量XX与Y的关系可以通过线性函数表示假定Y的变化与X的变化有关,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-6,相关类型,Y,X,Y,X,Y,Y,X,X,线性相关,曲线相关,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-7,关

4、系类型,Y,X,Y,X,Y,Y,X,X,强相关,弱相关,(续),Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-8,相关类型,Y,X,Y,X,不相关,(续),Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-9,线性组成部分,一元线性回归模型,总体的 Y轴截距,总体的斜率,随机误差项,因变量,自变量,随机误差部分,Business Statistics:A First Course,5e 2009 Prentice

5、-Hall,Inc.,Chap 12-10,(续),取值Xi时,因变量的随机误差,Y,X,与Xi对应的Y的观测值,与Xi 对应的Y的预测值,Xi,斜率=1,截距 0,i,一元线性回归模型,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-11,一元线性回归方程可以估计总体回归直线,一元线性回归方程(预测线),回归截距的估计值,回归斜率的估计值,第i个观测值的Y的估计(预测)值,第 i个观测值X的值,Business Statistics:A First Course,5e 2009 Prentice-Ha

6、ll,Inc.,Chap 12-12,最小二乘法,我们可以求出使得Y 和 的离差平方和最小的b0 和 b1的值,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-13,求出最小二乘方程的解,系数 b0 和 b1,以及本章的其它回归结果,通过Excel或者Minitab求出,文章中为感兴趣的读者列出了公式,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-14,b0 是当X 为零时,Y 的期望值b1 是当X 发生一个单

7、元的变化时,Y的期望值发生的变化,对斜率和截距的解释,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-15,一个房地产经纪人希望得出房屋售价与房屋大小(以平方英尺为单位)的关系随意抽取10间房子作为一个样本因变量(Y)=房价(1000美元)自变量(X)=平方英尺,一元线性回归的例子,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-16,一元线性回归例子:数据,Business Statistics:A First

8、 Course,5e 2009 Prentice-Hall,Inc.,Chap 12-17,一元线性回归例子:散点图,房价模型:散点图,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-18,一元线性回归的例子:利用 Excel,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-19,一元线性回归的例子:Excel 输出,回归方程为:,Business Statistics:A First Course,5e 200

9、9 Prentice-Hall,Inc.,Chap 12-20,一元线性回归的例子:Minitab 输出,The regression equation isPrice=98.2+0.110 Square FeetPredictor Coef SE Coef T PConstant 98.25 58.03 1.69 0.129Square Feet 0.10977 0.03297 3.33 0.010S=41.3303 R-Sq=58.1%R-Sq(adj)=52.8%Analysis of VarianceSource DF SS MS F PRegression 1 18935 18935

10、 11.08 0.010Residual Error8 13666 1708Total 9 32600,回归方程为:,房价=98.24833+0.10977(平方英尺),Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-21,一元线性回归的例子:图表分析法,房价模型:散点图和预测线,斜率=0.10977,截距=98.248,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-22,一元线性回归的例子:对 bo的解释,b

11、0 是当X 的值为零时,Y 的期望值(如果 0 在被观测到的X的取值范围内)因为一个房子的面积不可能为0,所以截距b0没有实际解释意义,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-23,b1 是X增加一个单位,导致Y的期望值发生的变化这里,b1=0.10977意味着,房子每增加一平方英尺,房价的期望值平均增加0.10977(1000美元)=109.77 美元,一元线性回归的例子:对b1的解释,Business Statistics:A First Course,5e 2009 Prentice-Ha

12、ll,Inc.,Chap 12-24,预测有2000平方英尺的房子的价格:,一个有2000平方英尺的房子的预测价格是317.85(1,000美元)=317,850美元,一元线性回归的例子:预测,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-25,一元线性回归的例子:预测,使用回归模型进行预测时,只能在数据的相关范围内做预测,相关范围内插值,不要试图推断超出观测X的相关范围的房价,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,

13、Chap 12-26,离差的度量,总方差有两部分组成:,总平方和,回归平方和,残差平方和,其中:=因变量的均值Yi=因变量的观测值=与Xi 对应的Y的观测值,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-27,(续),离差的度量,SST=总平方和(总变差)度量 观测值Yi与均值Y的差异SSR=回归平方和(能解释的离差平方和)由X和Y之间的关系所决定的偏差SSE=残差平方和(不能解释的离差平方和)由X和Y关系以外的其它因素所造成的偏差,Business Statistics:A First Course

14、,5e 2009 Prentice-Hall,Inc.,Chap 12-28,(续),Xi,Y,X,Yi,SST=(Yi-Y)2,SSE=(Yi-Yi)2,SSR=(Yi-Y)2,_,_,_,Y,Y,Y,_,Y,离差的度量,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-29,可决系数 是总变差中由回归模型解释的部分所占的比例可决系数也被称为:r-平方,并以 r2表示,可决系数 r2,注意:,Business Statistics:A First Course,5e 2009 Prentice-Hall

15、,Inc.,Chap 12-30,r2=1,r2 值的例子,Y,X,Y,X,r2=1,r2=1,X 和 Y是强线性关系:100%的Y的离差可以由 X的离差来解释,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-31,r2 值的例子,Y,X,Y,X,0 r2 1,X 和 Y之间是弱线性关系:一部分但并不是所有的Y的离差都可以用X的离差可以解释,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-32,r2 值的例子,r

16、2=0,X 和 Y之间没有线性关系:Y 的值不依赖于X.(Y的离差不能用X的离差解释),Y,X,r2=0,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-33,一元线性回归的例子:在Excel输出中的可决系数r2,58.08%的房价离差可以由平方英尺的离差来解释,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-34,一元线性回归的例子:在Minitab 输出中的可决系数r2,The regression equa

17、tion isPrice=98.2+0.110 Square FeetPredictor Coef SE Coef T PConstant 98.25 58.03 1.69 0.129Square Feet 0.10977 0.03297 3.33 0.010S=41.3303 R-Sq=58.1%R-Sq(adj)=52.8%Analysis of VarianceSource DF SS MS F PRegression 1 18935 18935 11.08 0.010Residual Error8 13666 1708Total 9 32600,58.08%的房价离差可以有平方英尺的离

18、差来解释,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-35,估计值的标准误差,观测值偏离回归线的标准差的计算公式为:,其中SSE=残差平方和 n=样本量,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-36,一元线性回归的例子:在Excel中,估计值的标准差,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-37,一元线

19、性回归的例子:在 Minitab中,估计值的标准差,The regression equation isPrice=98.2+0.110 Square FeetPredictor Coef SE Coef T PConstant 98.25 58.03 1.69 0.129Square Feet 0.10977 0.03297 3.33 0.010S=41.3303 R-Sq=58.1%R-Sq(adj)=52.8%Analysis of VarianceSource DF SS MS F PRegression 1 18935 18935 11.08 0.010Residual Error8

20、 13666 1708Total 9 32600,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-38,标准差的比较,Y,Y,X,X,SYX表示Y的观测值偏离回归线的程度,SYX的 大小应该是相对于样本数据中Y值的大小而言的,例如,相对于房价在200000美元-400000美元的范围 SYX=$41.33K 比较小,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-39,回归的假设条件,线性(Linearity)X

21、 和Y 之间的关系是线性的误差项相互独立(Independence of Errors)误差值是在统计上是独立的误差项呈正态分布(Normality of Error)给定任意 X值,误差项是服从正态分布的同方差(方差齐性)(Equal Variance)误差项所服从分布的方差为常数,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-40,残差分析,对于第 i个观测的残差 ei,是观测值与预测值之间的差 通过残差检验回归的假设条件 检验线性假设评估独立性假设 评估正态分布假设 对各种层次的X,检验方差相同

22、(方差齐性)的假设残差的图形分析可以画出残差随X的变化图,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-41,检验线性的残差分析,非线性,线性,x,残差,x,Y,x,Y,x,残差,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-42,检验独立性的残差分析,不独立,独立,X,X,残差,残差,X,残差,Business Statistics:A First Course,5e 2009 Prentice-Hall,

23、Inc.,Chap 12-43,检验正态性,检查残差的茎叶图检查残差的盒须图检查残差的直方图建立残差的正态概率图,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-44,检验正态性的残差分析,百分率,残差,当使用正态概率图时,正态误差大约将会排列在一条直线上,-3-2-1 0 1 2 3,0,100,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-45,检验同方差的残差分析,不同方差,同方差,x,x,Y,x,x,Y

24、,residuals,residuals,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-46,一元线性回归的例子:残差在Excel 中的输出,没有违背任何回归假设,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-47,有关斜率的统计推断,回归的斜率(b1)的标准差可以通过下式求出:,其中:=斜率标准差的估计值=这个估计值的标准差,Business Statistics:A First Course,5e 200

25、9 Prentice-Hall,Inc.,Chap 12-48,有关斜率的统计推断:t 检验,总体斜率的t检验X 和 Y之间存在线性关系吗?零假设与备择假设 H0:1=0(不存在线性关系)H1:1 0(线性关系确实存在)检验统计量,其中:b1=回归斜率系数 1=斜率假定值 Sb1=样本斜率的标准差,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-49,有关斜率的统计推断:t 检验的例子,估计的回归方程:,这个模型的斜率 0.1098 房价与房子建筑面积(平方英尺)有关系吗?,Business Stati

26、stics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-50,H0:1=0H1:1 0,来自 Excel 的输出:,b1,Predictor Coef SE Coef T PConstant 98.25 58.03 1.69 0.129Square Feet 0.10977 0.03297 3.33 0.010,来自 Minitab 的输出:,b1,有关斜率的统计推断:t 检验的例子,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-51,检验统计量

27、:tSTAT=3.329,有足够的证据表明建筑面积影响房价,决策:拒绝 H0,拒绝 H0,拒绝 H0,a/2=.025,-t/2,不拒绝 H0,0,t/2,a/2=.025,-2.3060,2.3060,3.329,d.f.=10-2=8,H0:1=0H1:1 0,有关斜率的统计推断:t 检验的例子,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-52,H0:1=0H1:1 0,来自 Excel输出:,p-值,有足够的证据表明建筑面积影响房价.,决策:拒绝 H0,因为 p-值,Predictor Coe

28、f SE Coef T PConstant 98.25 58.03 1.69 0.129Square Feet 0.10977 0.03297 3.33 0.010,来自 Minitab输出:,有关斜率的统计推断:t 检验的例子,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-53,显著性的F检验,F 检验统计量:其中,其中 FSTAT 服从自由度为1和(n 2)的F 分布,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Cha

29、p 12-54,显著性F检验的Excel 输出,自由度为1和8,F检验的p-值,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-55,显著性F检验的Minitab 输出,Analysis of VarianceSource DF SS MS F PRegression 1 18935 18935 11.08 0.010Residual Error8 13666 1708Total 9 32600,自由度为1和8,F检验的p-值,Business Statistics:A First Course,5e

30、2009 Prentice-Hall,Inc.,Chap 12-56,H0:1=0H1:1 0=.05df1=1 df2=8,检验统计量:决策:结论:,拒绝 H0,在显著性水平=0.05的 情况下,有足够的证据表明房子的大小影响销售价格,0,=.05,F.05=5.32,拒绝 H0,不拒绝 H0,临界值:F=5.32,显著性的F检验,(续),F,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-57,斜率的置信区间估计,斜率置信区间的估计:,房价的Excel打印输出:,在 95%的置信水平下,斜率的置信区

31、间为(0.0337,0.1858),d.f.=n-2,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-58,由于变量房价的变化单元为1000美元,我们有 95%的把握保证,每平方英尺的建筑面积对销售价格的影响在33.74美元到185.8美元之间,95%的置信区间 不包括 0.结论:在0.05的显著性水平下,房价与平方英尺的关系是显著的,(续),斜率的置信区间估计,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-5

32、9,相关系数的t检验,假设H0:=0(X 与 Y不相关)H1:0(相关)检验统计量(自由度为 n 2),Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-60,在.05的显著性水平下,有证据显示平方英尺与房价是线性关系吗?,H0:=0(不相关)H1:0(相关)=.05,df=10-2=8,(续),相关系数的t检验,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-61,结论:在5%的显著性水平下,有证据表明存在线性关

33、系,决策:拒绝 H0,拒绝 H0,拒绝 H0,a/2=.025,-t/2,不拒绝 H0,0,t/2,a/2=.025,-2.3060,2.3060,3.329,d.f.=10-2=8,(续),相关系数的t检验,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-62,均值的估计和单个数值的预测,Y,X,Xi,Y=b0+b1Xi,给定Xi,Y 均值的置信区间,给定Xi,单个Y值的预测区间,目标:对于给定的Xi,形成因变量均值的置信区间表示对其值的不确定,Y,Business Statistics:A Firs

34、t Course,5e 2009 Prentice-Hall,Inc.,Chap 12-63,给定X,Y均值的置信区间,给定特定的Xi,估计 Y 均值的置信区间,区间的大小取决于与均值X的距离,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-64,给定X,单个因变量Y的预测值区间,给定特定的Xi,估计单个因变量Y的预测值区间,为了反映单个个别事件的不确定性,将区间宽度增加一项额外项,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.

35、,Chap 12-65,均值估计的例子,求面积为2,000英尺的房子平均售价的95%置信区间,预测价格 Yi=317.85(1,000美元),估计Y|X=X置信区间,置信区间的端点是 280.66 和 354.90,或者从 280,660美元到 354,900美元,i,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-66,单个因变量估计的例子,一个面积有2,000英尺的95%预测价格区间,预测价格 Yi=317.85(1,000美元),估计 YX=X的预测值区间,预测区间的端点是 215.50 和 42

36、0.07,或者从215,500美元到420,070美元,i,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-67,用Excel得到的对置信区间的估计与预测区间的估计,在 Excel中,利用 PHStat|regression|simple linear regression 选择对话框“confidence and prediction interval for X=”,并且输入X的值,以及置信水平,Business Statistics:A First Course,5e 2009 Prentice-

37、Hall,Inc.,Chap 12-68,输入值,(续),对Y|X=Xi置信区间的估计,对YX=Xi预测区间的估计,Y,用Excel得到的对置信区间的估计与预测区间的估计,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-69,用minitab得到的对置信区间的估计与预测区间的估计,Predicted Values for New ObservationsNewObs Fit SE Fit 95%CI 95%PI 1 317.8 16.1(280.7,354.9)(215.5,420.1)Values o

38、f Predictors for New ObservationsNew SquareObs Feet 1 2000,输入值,对Y|X=Xi置信区间的估计,对YX=Xi预测区间的估计,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-70,回归分析的缺陷,对最小二乘法回归的假设条件了解不足不知如何评估最小二乘法的假设条件是否成立当违背某个假设条件时,不知道如何选择其他适用的回归方法在对实际问题了解不足的情况下,应用回归模型在相关范围之外,外推预测值,Business Statistics:A First

39、Course,5e 2009 Prentice-Hall,Inc.,Chap 12-71,避免回归缺陷的策略,首先画出散点图来观察X与Y之间可能的关系使用残差分析法,检验回归的假设是否成立将残差对自变量作散点图,判断该模型有没有违背同方差的假设利用残差的直方图、茎叶图、盒须图、正态概率图判断正态性的假设能否满足,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-72,避免回归缺陷的策略,如果显示有违背假设条件,采用其他方法或模型如果没有显示违背假设条件,那么应着手检验回归系数的显著性,以及估计置信区间与预

40、测值区间避免在自变量的区域范围之外进行预测外推,(续),Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-73,小结,介绍了各种回归模型回顾了回归假设与相关性讨论了确定一元线性回归方程描述了离差的度量讨论了残差分析,Business Statistics:A First Course,5e 2009 Prentice-Hall,Inc.,Chap 12-74,小结,描述了对斜率的统计推断讨论了相关系数 衡量关联强度解决了估计均值与预测单个值的问题讨论了回归可能存在的缺陷,并针对可能的缺陷提出了避免策略,(续),

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号