《数字存储示波器1模板.ppt》由会员分享,可在线阅读,更多相关《数字存储示波器1模板.ppt(54页珍藏版)》请在三一办公上搜索。
1、1,数字存储示波器,2,数字存储示波器,数字存储示波器是20世纪年代初发展起来的一种新型示波器。这种类型的示波器可以方便地实现对模拟信号波形进行长期存储并能利用机内微处理器系统对存储的信号做进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。数字存储示波器的出现使传统示波器的功能发生了重大变革。,3,一、概述,1、数字存储示波器的组成原理,4,一、概述,2、数字存储示波器的主要技术指标 1)最大取样速率 fmax 单位时间内完成的完整 AD 转换的最高次数。最大取样速率主要由 AD转换器的最高转换速率来决定。最大取样速率愈高,仪器捕捉信号的能力愈强。
2、数字存储示波器在某个测量时刻的实际取样速率可根据示波器当时设定的扫描时间因数(t/div)推算。其推算公式为,N每格的取样数;,t/div扫描时间因数,扫描一格所占用的时间。亦称扫描速度,5,一、概述,2、数字存储示波器的主要技术指标 2)存储带宽 存储带宽与取样速率密切相关。根据取样定理,如果取样速率大于或等于信号最高频率分量 的2倍,便可重现原信号波形。实际上,在数字存储示波器的设计中,为保证显示波形的分辨率,往往要求增加更多的取样点,一般一个周期取410点。,6,一、概述,2、数字存储示波器的主要技术指标 3)分辨率 分辨率用于反映存储信号波形细节的综合特性。分辨率包括垂直分辨率和水平分
3、辨率。垂直分辨率与 A/D 转换器的分辨率相对应,常以屏幕每格的分级数(级/div)表示。水平分辨率由存储器的容量来决定,常以屏幕每格含多少个取样点(点/div)表示。示波管屏幕坐标的刻度一般为 810 div。若示波器采用8位 A/D 转换器(256级),则其垂直分辨率为32级/div,用百分数表示为 1/2560.39。若采用容量为1KB的存储器,则水平分辨率为 1 024/10100 点/div,或用百分数表示为 1/1 0240.1。,7,一、概述,2、数字存储示波器的主要技术指标 4)存储容量 存储容量又称记录长度,用记录一帧波形数据占有的存储容量来表示,常以字(word)为单位。存
4、储容量与水平分辨率在数值上互为倒数关系。数字存储器的存储容量通常采用 256B,512B,1KB,4KB 等。存储容量愈大,水平分辨率就愈高。但存储容量并非越大越好,由于仪器最高取样速率的限制,若存储容量选取不恰当,往往会因时间窗口缩短而失去信号的重要成分,或者因时间窗口增大而使水平分辨率降低。,8,一、概述,2、数字存储示波器的主要技术指标 5)读出速度 读出速度是指将存储的数据从存储器中读出的速度,常用(时间)/div表示。其中,时间等于屏幕中每格内对应的存储容量读脉冲周期。使用时,示波器应根据显示器、记录装置或打印机等对速度的不同要求,选择不同的读出速度。,9,一、概述,2、数字存储示波
5、器的主要技术指标 数字存储示波器特点:(1)数字存储示波器在存储工作阶段,对快速信号采用较高的速率进行取样与存储,对慢速信号采用较低速率进行取样与存储,但在显示工作阶段,其读出速度采取了一个固定的速率,不受取样速率的限制,因而可以获得清晰而稳定的波形。对于观测频率很高的信号来说,模拟示波器必须选择带宽很高的阴极射线示波管,这就使造价上升,并且显示精度和稳定性都较低。而数字存储示波器采用了一个固定的相对较低的速率显示,从而可以使用低带宽、高分辨率、高可靠性而低造价的光栅扫描式示波管,这就从根本上解决了上述问题。若采用彩色显示,还可以很好地分辨各种信息.,10,一、概述,数字存储示波器特点:(2)
6、数字存储示波器能长时间地保存信号。这种特性对观察单次出现的瞬变信号尤为有利。有些信号,如单次冲击波、放电现象等都是在短暂的一瞬间产生,在示波器的屏幕上一闪而过,很难观察。数字存储示波器问世以前,屏幕照相是“存储”波形采取的主要方法。数字存储示波器把波形以数字方式存储起来,因而操作方便,且其存储时间在理论上可以是无限长的。,11,一、概述,数字存储示波器特点:(3)具有先进的触发功能。数字存储示波器不仅能显示触发后的信号,而且能显示触发前的信号,并且可以任意选择超前或滞后的时间,这对材料强度、地震研究、生物机能实验提供了有利的工具。除此之外,数字存储示波器还可以向用户提供边缘触发、组合触发、状态
7、触发、延迟触发等多种方式,来实现多种触发功能,方便、准确地对电信号进行分析。,12,一、概述,数字存储示波器特点:(4)测量精度高。模拟示波器水平精度由锯齿波的线性度决定,故很难实现较高的时间精度,一般限制在3%5%。而数字存储示波器由于使用晶振作高稳定时钟,有很高的测时精度。采用多位A/D转换器也使幅度测量精度大大提高。尤其是能够自动测量直接读数,有效地克服示波管对测量精度的影响,使大多数的数字存储示波器的测量精度优于1%。,13,一、概述,数字存储示波器特点:(5)具有很强的处理能力,这是由于数字存储示波器内含微处理器,因而能自动实现多种波形参数的测量与显示,例如上升时间、下降时间、脉宽、
8、频率、峰峰值等参数的测量与显示。能对波形实现多种复杂的处理,例如取平均值、取上下限值、频谱分析以及对两波形进行加、减、乘等运算处理。同时还能使仪器具有许多自动操作功能,例如自检与自校等功能,使仪器使用很方便。,14,一、概述,数字存储示波器特点:(6)具有数字信号的输入/输出功能,所以可以很方便地将存储的数据送到计算机或其他外部设备,进行更复杂的数据运算或分析处理。同时还可以通过GPIB 接口与计算机一起构成强有力的自动测试系统。数字存储示波器也有它的局限性,例如,由于受 A/D转换器最大转换速率等因素的影响,数字存储示波器目前还不能用于观测频率较高的信号。,15,二、数字存储示波器的原理分析
9、,波形的采集、波形的显示、波形的测量、波形的处理。1、实时取样方式的采集原理,实时取样是指对波形进行等时间间隔取样,按照取样先后的次序进行A/D转换并存入存储器中。,16,二、数字存储示波器的原理分析,1、实时取样方式的采集原理)取样,取样即连续波形的离散化,其方法可用右图说明。把模拟波形送到加有反偏的取样门的a点,在c点加入等间隔取样脉冲,则对应时间 tn(n1,2,3,)取样脉冲打开取样门的瞬间,在b点就得到相应的模拟量an(n1,2,3,),这个模拟量an 就是取样后得到的离散化的模拟量。,17,二、数字存储示波器的原理分析,1、实时取样方式的采集原理 2)A/D转换 若把an中的每一个
10、离散模拟量进行A/D转换,就可以得到相应的数字量。如果把这些数字量按序存放在存储器中,就相当于把一幅模拟波形以数字量的形式存储起来。A/D转换器是波形采集的关键部件。它决定了示波器的最大取样速率、存储带宽以及垂直分辨率等多项指标。,18,二、数字存储示波器的原理分析,1、实时取样方式的采集原理 3)扫描速度t/div 控制 扫描速度t/div控制器实际上是一个时基分频器,用于控制A/D 转换速率以及存储器的写入速度,它由一个准确度、稳定性很好的晶体振荡器、一组分频器和相应的组合电路组成。4)写地址计数器 写地址计数器用来产生写地址信号,它由二进制计数器组成,计数器的位数由存储长度来决定。写地址
11、计数器的计数频率应该与控制A/D转换器的取样时钟的频率相同。,19,二、数字存储示波器的原理分析,1、实时取样方式的采集原理 5)预置触发功能 预置触发功能含正延迟触发和负延迟触发两种情况。并且正负延迟及延迟时间都可以进行预置。在数字存储示波器中预置触发可以通过控制存储器的写操作过程来实现。在常态触发状态下 当被测信号大于预置电平时,触发电路便产生触发信号,于是存储器就从零地址开始写入采集的数据,设示波器的存储容量为1024,则当写满1024个单元后便停止写操作。显示也从零地址开始读数据,则对应示波器屏幕上显示的信号便是触发点开始后的波形。,20,二、数字存储示波器的原理分析,1、实时取样方式
12、的采集原理 5)预置触发功能 在正延迟时 在正延迟时(即显示延迟触发点N个取样点时间),触发信号到来后,存储器不立即写入数据,而是延迟N次取样之后才开始写入。这样当显示时,示波器屏幕上显示的信号便是触发点之后N个取样点的波形。这等效于示波器的时间窗口右移。,21,二、数字存储示波器的原理分析,1、实时取样方式的采集原理 5)预置触发功能 在负延迟时 在负延迟时(即显示超前触发点N个取样点时间),触发信号到来前,存储器信号便就一直处于01023单元不断循环写入的过程中,当写满1024个单元之后,新内容将覆盖旧内容继续写入。当触发信号到来后,使存储器再写入1024-N个取样点之后停止写操作。显示时
13、,不是从零地址读数据,而是从停止写操作时地址的下一个地址作为显示首地址连续读1024个单元的内容。这样,示波器屏幕上显示的便是触发点之前N次取样点为起点的波形,这等于示波器的时间窗口左移。,22,二、数字存储示波器的原理分析,2、等效时间取样方式的采集原理 实时取样方式对观测单次出现的信号非常有效,是数字存储示波器必须具备的取样方式,但实时取样方式受到A/D转换器最高转换速率的限制,使观察和存储信号的频带宽度受到了限制。等效时间取样方式是先采用“取样技术”,将周期性的高频信号变换成波形与其相似的周期性低频信号,然后再做进一步的处理,因而可以比较容易地获得很宽的频带宽度。但等效时间取样仅限于处理
14、重复性的周期信号。,23,二、数字存储示波器的原理分析,2、等效时间取样方式的采集原理,24,二、数字存储示波器的原理分析,3、波形的显示 1)存储显示 存储显示是数字存储示波器最基本的显示方式。它显示的波形是触发后所存储的一帧波形信号,即在一次触发所完成的一帧信号数据采集之后,再通过控制存储器的地址依次将数据读出,并经D/A转换稳定地显示在CRT上。依照读出方法的不同,又可分为:CPU控制方式 直接控制方式。,25,二、数字存储示波器的原理分析,3、波形的显示 1)存储显示 CPU 控制方式:将存储器中的数据 按地址顺序取出,送到 D/A转换器转换,还原 为模拟量送至Y轴;与 此同时,将地址
15、按同样 顺序送出,经D/A转换 器转换为阶梯波送至X轴。这样就能把被测波形显示在CRT屏幕上。,26,二、数字存储示波器的原理分析,3、波形的显示 1)存储显示 直接控制方式:数据传输不再经过CPU,而直接对内存进行读/写操作,因此速度快。,这种方式的数据传输速度取决于时钟的速率,速度较快。,27,二、数字存储示波器的原理分析,3、波形的显示 1)存储显示 CPU控制方式显示的特点:无论是Y轴还是X轴的数据,都必须通过CPU传输,数据传输速度受到一定的限制。直接控制方式显示的特点:直接在时钟的驱动下对内存进行读/写操作,不再经过CPU,数据传输速度仅取决于时钟速率,而不是由软件决定的,速度较快
16、。,28,二、数字存储示波器的原理分析,3、波形的显示 1)存储显示 存储显示方式还有连续触发显示和单次触发显示之分。在连续触发显示方式下,每满足一次触发条件,就完成一帧数据的取样与存储,同时,屏幕上原来的显示波形就被新存储的数据更新一次。单次触发显示只不断显示一次触发而取样与存储的数据波形。,29,二、数字存储示波器的原理分析,3、波形的显示 2)双踪显示 存储时,为了使两条波形保持原有的时间对应关系,常采用交替存储技术。即利用写地址的最低位A0来控制通道开关,使取样电路轮流对两通道输入信号进行取样和A/D转换。,读出时,先读偶数地址,再读奇数地址,Y1和Y2信号便在CRT上交替显示。,30
17、,二、数字存储示波器的原理分析,3、波形的显示 2)双踪显示 为了使两通道信号的波形分别显示于屏幕的上半部和下半部,可将存入存储器的数字序列Y1n与Y2n中的每一数据右移一位(即除以2);再将Y2n中每一个数据的最高位置1,将Y1n中每一个数据的最高位保持为零,便可达到两通道信号分区域显示的效果。但这种处理方式使波形垂直分辨率降低了一倍。,31,二、数字存储示波器的原理分析,3、波形的显示 3)锁存和半存显示 锁存显示就是把一幅波形数据存入存储器之后,只允许从存储器中读出数据进行显示,不准新数据再写入。半存显示是指波形被存储之后,允许存储器奇数(或偶数)地址中的内容更新,但偶数(或奇数)地址中
18、的内容保持不变。于是屏幕上便出现两个波形,一个是已存储的波形信号,另一个是实时测量的波形信号。这种显示方法可以实现将现行波形与过去存储下来的波形进行比较的功能。,32,二、数字存储示波器的原理分析,3、波形的显示 4)滚动显示 滚动显示的表现形式是:被测波形连续不断地从屏幕右端进入,从屏幕左端移出。示波器犹如一台图形记录仪,记录笔在屏幕的右端,记录纸由右向左移动,当发现欲研究的波形部分时,还可将波形存储或固定在屏幕上,以作细微的观察与分析。滚动显示方式的机理是:每当采集到一个新的数据时,就把已存在存储器中的所有数据都向前移动一个单元,即将第一个单元的数据冲掉,其他单元的内容依次向前递进,然后再
19、在最后一个单元中存入新采集的数据。每写入一个数据,就进行一次读过程,读出和写入的内容不断更新,因而可以产生波形滚滚而来的滚动效果。滚动显示主要适于缓慢变化的信号。,33,二、数字存储示波器的原理分析,3、波形的显示 5)点显示与插值显示 数字示波器屏幕显示的波形一般是由一些密集的点构成,通常称点显示。在点显示情况下,当被观察的信号在一周期内采样点数较少时会引起视觉上的混淆现象,使观察者很难辨认。一般认为当采样频率低于被测信号频率的2.5倍时,点显示就会造成视觉混淆。,34,二、数字存储示波器的原理分析,3、波形的显示 5)点显示与插值显示 采用插值显示可以克服视觉的混淆现象,同时又不降低带宽指
20、标。,35,二、数字存储示波器的原理分析,3、波形的显示 5)点显示与插值显示 所谓插值显示,即在波形上两个测试数据点间插入一个估值。数字示波器广泛采用矢量插值法和正弦插值法两种方式。矢量插值法是用斜率不同的直线段来连接相邻的点。正弦插值法是以正弦规律,用曲线连接各数据点的显示方式,其能力已接近奈奎斯特极限频率。,36,数字存储示波器的设计,设计并制作一台用普通示波器显示被测波形的简易数字存储示波器,示意图如下:,37,数字存储示波器的设计,功能和技术指标:(1)具有连续触发和单次触发显示方式。在连续触发显示方式中,能连续对信号进行采集、存储并实时显示,且具有锁存(按“锁存”键即可存储当前波形
21、)功能。在单次触发显示方式下,每按动一次“单次触发”键,仪器在满足触发条件时,能对被测周期信号或单次非周期信号进行一次采集与存储,然后连续显示采集的波形。(2)触发电路采用内部上升沿触发方式,触发电平可调。(3)具有双踪示波功能,能同时显示两路被测信号波形。(4)具有水平移动扩展显示功能,要求将存储深度增加一倍,并且能通过操作“移动”键显示被存储信号波形的任一部分。,38,数字存储示波器的设计,功能和技术指标(续):(5)垂直分辨率为32级/div,水平分辨率为20点/div(设示波器显示屏水平刻度为10div,垂直刻度为8div),输入阻抗大于100k。(6)频率范围为DC50kHz,最少设
22、置0.2s/div、0.2ms/div、20s/div三挡扫描速度,其误差5%;最少设置1V/div、0.1V/div、0.01V/div三挡垂直灵敏度,其误差5%。,39,数字存储示波器的设计,1、技术指标分析及总体方案的制定 1)取样方式的选择 设计要求存储示波器具有单次触发功能,能对单次出现的信号进行测量,非实时的等效时间取样方式无能为力。因此,选用实时取样方式。2)A/D转换器的选择 垂直分辨率为32级/div,而显示屏的垂直刻度为8div,因而要求A/D转换器能分辨328256级,应选择8位A/D转换器。,40,数字存储示波器的设计,1、技术指标分析及总体方案的制定 2)A/D转换器
23、的选择 要求示波器的最快扫描速度为20s/div,水平分辨率为20点/div,因而A/D转换器的最高转换速率应为1MHz。若考虑双踪输入情况,A/D转换器最高转换速率应选择在2MHz以上。根据上述分析,A/D转换器应选择最高转换速率为2MHz以上的8位A/D转换器,例如CA 3308、TLC 5510等。,41,数字存储示波器的设计,1、技术指标分析及总体方案的制定 3)存储器的选择 要求水平分辨率为20点/div,而显示屏水平刻度为10div,因而满屏扫描显示需2010200点。考虑双踪示波功能,存储深度应增加到400点,若再考虑水平移动扩展显示功能的需要,可考虑选择容量为1KB以上的存储器
24、。数字存储示波器工作的一个重要特点是要求数据的写入与读出能同时进行,这就存在一个共享RAM的问题。可以考虑采用如下两种方案:(1)采用一般的RAM并设计相应的外围控制电路,使数据的写入与读出分时使用同一套总线。(2)采用具有两套总线的双口RAM器件。,42,数字存储示波器的设计,1、技术指标分析及总体方案的制定 4)控制方案的确定 由于存储示波器一般采样速率较高(本题要求最高采样速率不小于2MHz),控制的实时性较强,并且采集与存储要求保持严格的同步,因此采用普通单片机直接控制很难胜任。本设计采用“CPLD单片机”的两层控制方案,底层控制由CPLD或普通IC为核心的高速逻辑控制电路,实现对系统
25、实时控制和高速的数据采集、存储与传输;顶层由单片机实现人机交互、数据处理等项工作。,43,数字存储示波器的设计,1、技术指标分析及总体方案的制定 4)控制方案的确定,44,数字存储示波器的设计,2、关键电路的分析与设计 1)输入电路的分析与设计 输入电路主要作用是将输入信号的幅度调整到A/D转换器允许的电压范围内。要求垂直灵敏度挡位范围在0.01V/div1V/div之间,示波器显示屏的垂直刻度为8div,则对应被测信号电压幅度的范围应在0.08V8V之间。如果选择的A/D转换器最大输入电压幅度为2.5V,则计算得到对应的输入电路的衰减放大系数的范围应为0.2525。若考虑Autoscale功
26、能的要求,则应按125分配原则设置7挡垂直灵敏度的量程(覆盖题目要求的3挡量程)。,45,数字存储示波器的设计,2、关键电路的分析与设计 1)输入电路的分析与设计 不同垂直灵敏度(V/div挡)与对应的衰减放大系数的关系 很显然,输入电路应是一个宽带的数控衰减放大电路。,46,数字存储示波器的设计,2、关键电路的分析与设计 1)输入电路的分析与设计 根据上表提供的数据,输入电路可以由二挡量程的程控衰减器(1、0.1)和四挡量程的程控放大器(2.5、5、12.5、25)组合而成,或者采用具有7挡量程的程控衰减器和放大倍数固定为25的放大器组成等方案。,47,数字存储示波器的设计,2、关键电路的分
27、析与设计 1)输入电路的分析与设计 要求仪器输入带宽不小于50kHz,选用集成运放LF356(GBW为5MHz);实际输入电路设计还要考虑双踪输入,单双踪控制由多路选择器IC6完成,当P1.1为高电平时,仪器为双踪示波功能;主放大器IC3是根据表8-7设计的具有七挡量程的程控放大器,通过控制模拟选择开关IC7实现垂直灵敏度的选择;IC4组成电平移位电路,以使输入信号的电平移位到A/D转换器所要求的02V范围内。,48,数字存储示波器的设计,2、关键电路的分析与设计 1)输入电路的分析与设计,49,数字存储示波器的设计,2、关键电路的分析与设计 2)采样与存储控制电路的设计,50,数字存储示波器
28、的设计,2、关键电路的分析与设计 2)采样与存储控制电路的设计 输入信号经输入电路分送至A/D转换器与触发电路。控制电路一旦接到来自触发电路的触发信号,就启动一次数据采集及RAM写入过程:一方面,“t/div”控制器产生一个对应控制转换速率的采集信号,使A/D转换器按设定的转换速率对输入信号进行采集;另一方面,使写地址计数器按顺序递增,以选通RAM中对应的存储单元。为了保证下一个数据能可靠写入到对应的存储单元中,应安排在时钟的上升沿将数据写入到存储器,在其下降沿将地址计数器加1。一旦200个存储单元写满,就完成了一个写入循环。,51,数字存储示波器的设计,2、关键电路的分析与设计 2)采样与存
29、储控制电路的设计 t/div 控制器用于控制 A/D 转换器的转换速率和对应的存储器的写入地址,它是采集与存储控制电路的核心。t/div 控制器实际上是一个时基分频器,题目要求扫描速度范围在0.2s/div20s/div之间,水平分辨率为20点/div,则推算得A/D转换器转换速率的范围在100Hz1MHz之间。,52,数字存储示波器的设计,2、关键电路的分析与设计 3)波形显示电路的设计 数字存储示波器区别于模拟示波器的一个重要方面是,波形的显示与波形的采集和存储在管理上是分离的,即不管数据以何种速度写入到存储器中,存储器中存储的数据均以固定的速度读出,因而可以得到清晰而稳定的波形。这样我们就可以无闪烁地观察极慢信号,同时也可以稳定地显示很高频率的信号。这是模拟示波器所不能及的。,53,数字存储示波器的设计,2、关键电路的分析与设计 3)波形显示电路的设计 波形显示控制电路一般由时钟、读地址计数器、RAM读控制等部分组成,用以控制双口RAM的一组地址和控制总线。波形显示控制电路和采集与存储控制电路在逻辑关系上是可以分离的,但在设计中两者可以设计在同一可编程逻辑器件中。,54,数字存储示波器的设计,2、关键电路的分析与设计 3)波形显示电路的设计,由于()和()信号都来源于同一地址发生器,因而在显示屏上形成的波形非常稳定。,