数据结构严蔚敏第6章.ppt

上传人:小飞机 文档编号:6296838 上传时间:2023-10-14 格式:PPT 页数:141 大小:1.76MB
返回 下载 相关 举报
数据结构严蔚敏第6章.ppt_第1页
第1页 / 共141页
数据结构严蔚敏第6章.ppt_第2页
第2页 / 共141页
数据结构严蔚敏第6章.ppt_第3页
第3页 / 共141页
数据结构严蔚敏第6章.ppt_第4页
第4页 / 共141页
数据结构严蔚敏第6章.ppt_第5页
第5页 / 共141页
点击查看更多>>
资源描述

《数据结构严蔚敏第6章.ppt》由会员分享,可在线阅读,更多相关《数据结构严蔚敏第6章.ppt(141页珍藏版)》请在三一办公上搜索。

1、第六章树和二叉树,教学目的和要求,1、熟练掌握二叉树的结构特点,了解相应的证明。2、熟悉二叉树的各种存储结构的特点及适用范围。3、掌握二叉树遍历的递归与非递归算法。4、掌握二叉线索树的相关算法。5、熟悉树的各种存储结构及特点,掌握树和森林与二叉树的方法。6、了解最优树的特性,掌握最优树和哈夫曼编码的方法。,1数据的逻辑结构,2、数据的存储结构,3、数据的运算:检索、排序、插入、删除、修改等。,A线性结构,B非线性结构,A 顺序存储,B 链式存储,线性表,栈,队,树形结构,图形结构,数据结构的三个主要问题,树形结构,全校学生档案管理的组织方式,树形结构 结点间具有分层次的连接关系,6.1 树的类

2、型定义,6.2 二叉树的类型定义,6.3 二叉树的存储结构,6.4 二叉树的遍历,6.5 线索二叉树,6.6 树和森林的表示方法,6.7 树和森林的遍历,6.8 哈夫曼树与哈夫曼编码,6.1 树的类型定义,数据对象 D:,D是具有相同特性的数据元素的集合。,若D为空集,则称为空树。否则:(1)在D中存在唯一的称为根的数据元素root;(2)当n1时,其余结点可分为m(m0)个互 不相交的有限集T1,T2,Tm,其中每一 棵子集本身又是一棵符合本定义的树,称为根root的子树。,数据关系 R:,A,B,C,D,E,F,G,H,I,J,M,K,L,A(B(E,F(K,L),C(G),D(H,I,J

3、(M),T1,T3,T2,树根,例如:,基本操作:,查 找 类,插 入 类,删 除 类,Root(T)/求树的根结点,查找类:,Value(T,cur_e)/求当前结点的元素值,Parent(T,cur_e)/求当前结点的双亲结点,LeftChild(T,cur_e)/求当前结点的最左孩子,RightSibling(T,cur_e)/求当前结点的右兄弟,TreeEmpty(T)/判定树是否为空树,TreeDepth(T)/求树的深度,TraverseTree(T,Visit()/遍历,InitTree(&T)/初始化置空树,插入类:,CreateTree(&T,definition)/按定义构

4、造树,Assign(T,cur_e,value)/给当前结点赋值,InsertChild(&T,&p,i,c)/将以c为根的树插入为结点p的第i棵子树,ClearTree(&T)/将树清空,删除类:,DestroyTree(&T)/销毁树的结构,DeleteChild(&T,&p,i)/删除结点p的第i棵子树,对比树型结构和线性结构的结构特点,线性结构,树型结构,第一个数据元素(无前驱),根结点(无前驱),最后一个数据元素(无后继),多个叶子结点(无后继),其它数据元素(一个前驱、一个后继),其它数据元素(一个前驱、多个后继),基 本 术 语,结点:,结点的度:,树的度:,叶子结点:,分支结点

5、:,数据元素+若干指向子树的分支,分支的个数,树中所有结点的度的最大值,度为零的结点,度大于零的结点,D,H,I,J,M,(从根到结点的)路径:,孩子结点、双亲结点兄弟结点、堂兄弟祖先结点、子孙结点,结点的层次:,树的深度:,由从根到该结点所经分支和结点构成,A,B,C,D,E,F,G,H,I,J,M,K,L,假设根结点的层次为1,第l 层的结点的子树根结点的层次为l+1,树中叶子结点所在的最大层次,任何一棵非空树是一个二元组 Tree=(root,F)其中:root 被称为根结点 F 被称为子树森林,森林:,是m(m0)棵互不相交的树的集合,A,root,B,C,D,E,F,G,H,I,J,

6、M,K,L,F,6.2 二叉树的类型定义,二叉树或为空树,或是由一个根结点加上两棵分别称为左子树和右子树的、互不交的二叉树组成。,A,B,C,D,E,F,G,H,K,根结点,左子树,右子树,二叉树的五种基本形态:,N,空树,只含根结点,N,N,N,L,R,R,右子树为空树,L,左子树为空树,左右子树均不为空树,二叉树的主要基本操作:,查 找 类,插 入 类,删 除 类,Root(T);Value(T,e);Parent(T,e);LeftChild(T,e);RightChild(T,e);LeftSibling(T,e);RightSibling(T,e);BiTreeEmpty(T);Bi

7、TreeDepth(T);PreOrderTraverse(T,Visit();InOrderTraverse(T,Visit();PostOrderTraverse(T,Visit();LevelOrderTraverse(T,Visit();,InitBiTree(,ClearBiTree(,二叉树的重要特性,性质 1:在二叉树的第 i 层上至多有2i-1 个结点。(i1),用归纳法证明:归纳基:归纳假设:归纳证明:,i=1 层时,只有一个根结点:2i-1=20=1;,假设对所有的 j,1 j i,命题成立;,二叉树上每个结点至多有两棵子树,则第 i 层的结点数=2i-2 2=2i-1。,

8、性质 2:深度为 k 的二叉树上至多含 2k-1 个结点(k1)。,证明:,基于上一条性质,深度为 k 的二叉树上的结点数至多为 20+21+2k-1=2k-1。,性质 3:对任何一棵二叉树,若它含有n0 个叶子结点、n2 个度为 2 的结点,则必存在关系式:n0=n2+1。,证明:,设 二叉树上结点总数 n=n0+n1+n2又 二叉树上分支总数 b=n1+2n2 而 b=n-1=n0+n1+n2-1由此,n0=n2+1。,两类特殊的二叉树:,满二叉树:指的是深度为k且含有2k-1个结点的二叉树。,完全二叉树:树中所含的 n 个结点和满二叉树中编号为 1 至 n 的结点一一对应。,1,2,3,

9、4,5,6,7,8,9,10,11,12,13,14,15,a,b,c,d,e,f,g,h,i,j,性质 4:具有 n 个结点的完全二叉树的深度为 log2n+1。,证明:,设完全二叉树的深度为 k 则根据第二条性质得 2k-1 n 2k 即 k-1 log2 n k 因为 k 只能是整数,因此,k=log2n+1。,性质 5:,若对含 n 个结点的完全二叉树从上到下且从左至右进行 1 至 n 的编号,则对完全二叉树中任意一个编号为 i 的结点:(1)若 i=1,则该结点是二叉树的根,无双亲,否则,编号为 i/2 的结点为其双亲结点;(2)若 2in,则该结点无左孩子,否则,编号为 2i 的结

10、点为其左孩子结点;(3)若 2i+1n,则该结点无右孩子结点,否则,编号为2i+1 的结点为其右孩子结点。,6.3 二叉树的存储结构,二、二叉树的链式 存储表示,一、二叉树的顺序 存储表示,#define MAX_TREE_SIZE 100/二叉树的最大结点数typedef TElemType SqBiTreeMAX_ TREE_SIZE;/0号单元存储根结点SqBiTree bt;,一、二叉树的顺序存储表示,例如:,A,B,C,D,E,F,A B D C E F,0 1 2 3 4 5 6 7 8 9 10 11 12 13,1,4,0,13,2,6,顺序存储结构仅适用于完全二叉树!,二、二

11、叉树的链式存储表示,1.二叉链表,2三叉链表,3双亲链表,4线索链表,A,D,E,B,C,F,root,lchild data rchild,结点结构:,1.二叉链表,typedef struct BiTNode/结点结构 TElemType data;struct BiTNode*lchild,*rchild;/左右孩子指针 BiTNode,*BiTree;,lchild data rchild,结点结构:,C 语言的类型描述如下:,A,D,E,B,C,F,root,2三叉链表,parent lchild data rchild,结点结构:,typedef struct TriTNode/结

12、点结构 TElemType data;struct TriTNode*lchild,*rchild;/左右孩子指针 struct TriTNode*parent;/双亲指针 TriTNode,*TriTree;,parent lchild data rchild,结点结构:,C 语言的类型描述如下:,0123456,data parent,结点结构:,3双亲链表,LRTag,LRRRL,typedef struct BPTNode/结点结构 TElemType data;int*parent;/指向双亲的指针 char LRTag;/左、右孩子标志域 BPTNode typedef struc

13、t BPTree/树结构 BPTNode nodesMAX_TREE_SIZE;int num_node;/结点数目 int root;/根结点的位置 BPTree,6.4二叉树的遍历,一、问题的提出,二、先左后右的遍历算法,三、算法的递归描述,四、中序遍历算法的非递归描述,五、遍历算法的应用举例,顺着某一条搜索路径巡访二叉树中的结点,使得每个结点均被访问一次,而且仅被访问一次。,一、问题的提出,“访问”的含义可以很广,如:输出结点的信息等。,“遍历”是任何类型均有的操作,对线性结构而言,只有一条搜索路径(因为每个结点均只有一个后继),故不需要另加讨论。而二叉树是非线性结构,,每个结点有两个后

14、继,则存在如何遍历即按什么样的搜索路径遍历的问题。,对“二叉树”而言,可以有三条搜索路径:,1先上后下的按层次遍历;2先左(子树)后右(子树)的遍历;3先右(子树)后左(子树)的遍历。,二、先左后右的遍历算法,先序(根)的遍历算法,中序(根)的遍历算法,后序(根)的遍历算法,若二叉树为空树,则空操作;否则,(1)访问根结点;(2)先序遍历左子树;(3)先序遍历右子树。,先序(根)的遍历算法:,若二叉树为空树,则空操作;否则,(1)中序遍历左子树;(2)访问根结点;(3)中序遍历右子树。,中序(根)的遍历算法:,若二叉树为空树,则空操作;否则,(1)后序遍历左子树;(2)后序遍历右子树;(3)访

15、问根结点。,后序(根)的遍历算法:,课堂提问:,有以下结构的二叉树写出其先序、中序和后序遍历的序列,三、算法的递归描述,void Preorder(BiTree T,void(*visit)(TElemType/遍历右子树,四、中序遍历算法的非递归描述,BiTNode*GoFarLeft(BiTree T,Stack*S)if(!T)return NULL;while(T-lchild)Push(S,T);T=T-lchild;return T;,void Inorder_I(BiTree T,void(*visit)(TelemType/栈空表明遍历结束/while/Inorder_I,五、

16、遍历算法的应用举例,1、统计二叉树中叶子结点的个数(先序遍历),2、求二叉树的深度(后序遍历),3、复制二叉树(后序遍历),4、建立二叉树的存储结构,1、统计二叉树中叶子结点的个数,算法基本思想:,先序(或中序或后序)遍历二叉树,在遍历过程中查找叶子结点,并计数。由此,需在遍历算法中增添一个“计数”的参数,并将算法中“访问结点”的操作改为:若是叶子,则计数器增1。,void CountLeaf(BiTree T,int/if/CountLeaf,2、求二叉树的深度(后序遍历),算法基本思想:,从二叉树深度的定义可知,二叉树的深度应为其左、右子树深度的最大值加1。由此,需先分别求得左、右子树的深

17、度,算法中“访问结点”的操作为:求得左、右子树深度的最大值,然后加 1。,首先分析二叉树的深度和它的左、右子树深度之间的关系。,int Depth(BiTree T)/返回二叉树的深度 if(!T)depthval=0;else depthLeft=Depth(T-lchild);depthRight=Depth(T-rchild);depthval=1+(depthLeft depthRight?depthLeft:depthRight);return depthval;,3、复制二叉树,其基本操作为:生成一个结点。,根元素,T,左子树,右子树,根元素,NEWT,左子树,右子树,左子树,右子

18、树,(后序遍历),BiTNode*GetTreeNode(TElemType item,BiTNode*lptr,BiTNode*rptr)if(!(T=(BiTNode*)malloc(sizeof(BiTNode)exit(OVERFLOW);T-data=item;T-lchild=lptr;T-rchild=rptr;return T;,生成一个二叉树的结点(其数据域为item,左指针域为lptr,右指针域为rptr),BiTNode*CopyTree(BiTNode*T)if(!T)return NULL;if(T-lchild)newlptr=CopyTree(T-lchild);

19、/复制左子树 else newlptr=NULL;if(T-rchild)newrptr=CopyTree(T-rchild);/复制右子树 else newrptr=NULL;newT=GetTreeNode(T-data,newlptr,newrptr);return newT;/CopyTree,A,B,C,D,E,F,G,H,K,D,C,B,H,K,G,F,E,A,例如:下列二叉树的复制过程如下:,newT,4、建立二叉树的存储结构,不同的定义方法相应有不同的存储结构的建立算法,以字符串“A!”表示,以字符串的形式 根 左子树 右子树定义一棵二叉树,例如:,A,B,C,D,以字符“!”

20、表示,A(B(!,C(!,!),D(!,!),空树,只含一个根结点的二叉树,A,以下列字符串表示,Status CreateBiTree(BiTree/CreateBiTree,仅知二叉树的先序序列“abcdefg”不能唯一确定一棵二叉树,,由二叉树的先序和中序序列建树,如果同时已知二叉树的中序序列“cbdaegf”,则会如何?,二叉树的先序序列,二叉树的中序序列,左子树,左子树,右子树,右子树,根,根,a b c d e f g,c b d a e g f,例如:,a,a,b,b,c,c,d,d,e,e,f,f,g,g,a,b,c,d,e,f,g,先序序列中序序列,void CrtBT(Bi

21、Tree else/CrtBT,T=(BiTNode*)malloc(sizeof(BiTNode);T-data=preps;if(k=is)T-Lchild=NULL;else CrtBT(T-Lchild,pre,ino,ps+1,is,k-is);if(k=is+n-1)T-Rchild=NULL;else CrtBT(T-Rchild,pre,ino,ps+(k-is)+1,k+1,n-(k-is)-1);,练习题:,1、编写递归算法,将二叉树中所有结点的左、右子树交换。2、编写递归算法:对于二叉树中每一个元素值为x的结点,删除以它为根的子树,并释放相应的空间。3、编写按层次顺序(同

22、一层自左至右)遍历二叉树的算法。,6.5线索二叉树,何谓线索二叉树?线索链表的遍历算法 如何建立线索链表?,一、何谓线索二叉树?,遍历二叉树的结果是,求得结点的一个线性序列。,A,B,C,D,E,F,G,H,K,例如:,先序序列:A B C D E F G H K,中序序列:B D C A H G K F E,后序序列:D C B H K G F E A,指向该线性序列中的“前驱”和“后继”的指针,称作“线索”,与其相应的二叉树,称作“线索二叉树”,包含“线索”的存储结构,称作“线索链表”,A B C D E F G H K,D,C,B,E,对线索链表中结点的约定:,在二叉链表的结点中增加两个

23、标志域,并作如下规定:,若该结点的左子树不空,则Lchild域的指针指向其左子树,且左标志域的值为“指针 Link”;否则,Lchild域的指针指向其“前驱”,且左标志的值为“线索 Thread”。,若该结点的右子树不空,则rchild域的指针指向其右子树,且右标志域的值为“指针 Link”;否则,rchild域的指针指向其“后继”,且右标志的值为“线索 Thread”。,如此定义的二叉树的存储结构称作“线索链表”。,typedef struct BiThrNod TElemType data;struct BiThrNode*lchild,*rchild;/左右指针 PointerThr L

24、Tag,RTag;/左右标志 BiThrNode,*BiThrTree;,线索链表的类型描述:,typedef enum Link,Thread PointerThr;/Link=0:指针,Thread=1:线索,二、线索链表的遍历算法:,for(p=firstNode(T);p;p=Succ(p)Visit(p);,由于在线索链表中添加了遍历中得到的“前驱”和“后继”的信息,从而简化了遍历的算法。,例如:对中序线索化链表的遍历算法,中序遍历的第一个结点?,在中序线索化链表中结点的后继?,左子树上处于“最左下”(没有左子树)的结点。,若无右子树,则为后继线索所指结点;,否则为对其右子树进行中序

25、遍历时访问的第一个结点。,void InOrderTraverse_Thr(BiThrTree T,void(*Visit)(TElemType e)p=T-lchild;/p指向根结点 while(p!=T)/空树或遍历结束时,p=T while(p-LTag=Link)p=p-lchild;/第一个结点 if(!Visit(p-data)return ERROR;while(p-RTag=Thread/p进至其右子树根/InOrderTraverse_Thr,在中序遍历过程中修改结点的左、右指针域,以保存当前访问结点的“前驱”和“后继”信息。遍历过程中,附设指针pre,并始终保持指针pre

26、指向当前访问的、指针p所指结点的前驱。,三、如何建立线索链表?,void InThreading(BiThrTree p)if(p)/对以p为根的非空二叉树进行线索化 InThreading(p-lchild);/左子树线索化 if(!p-lchild)/建前驱线索 p-LTag=Thread;p-lchild=pre;if(!pre-rchild)/建后继线索 pre-RTag=Thread;pre-rchild=p;pre=p;/保持 pre 指向 p 的前驱 InThreading(p-rchild);/右子树线索化/if/InThreading,Status InOrderThread

27、ing(BiThrTree/InOrderThreading,if(!T)Thrt-lchild=Thrt;else Thrt-lchild=T;pre=Thrt;InThreading(T);pre-rchild=Thrt;/处理最后一个结点 pre-RTag=Thread;Thrt-rchild=pre;,6.6 树和森林 的表示方法,6.6.1 树的三种存储结构,一、双亲表示法,二、孩子链表表示法,三、树的二叉链表(孩子-兄弟)存储表示法,A,B,C,D,E,F,G,0 A-11 B 02 C 03 D 04 E 2 5 F 26 G 5,r=0n=6,data parent,一、双亲表

28、示法:,typedef struct PTNode Elem data;int parent;/双亲位置域 PTNode;,data parent,#define MAX_TREE_SIZE 100,结点结构:,C语言的类型描述:,typedef struct PTNode nodes MAX_TREE_SIZE;int r,n;/根结点的位置和结点个数 PTree;,树结构:,A,B,C,D,E,F,G,0 A-11 B 02 C 03 D 04 E 25 F 26 G 4,r=0n=6,data firstchild,1 2 3,4 5,6,二、孩子链表表示法:,typedef struc

29、t CTNode int child;struct CTNode*next;*ChildPtr;,孩子结点结构:,child next,C语言的类型描述:,typedef struct Elem data;ChildPtr firstchild;/孩子链的头指针 CTBox;,双亲结点结构,data firstchild,typedef struct CTBox nodesMAX_TREE_SIZE;int n,r;/结点数和根结点的位置 CTree;,树结构:,A,B,C,D,E,F,G,AB C E D F G,root,AB C E D F G,三、树的二叉链表(孩子-兄弟)存储表示法,

30、typedef struct CSNode Elem data;struct CSNode*firstchild,*nextsibling;CSNode,*CSTree;,C语言的类型描述:,结点结构:,firstchild data nextsibling,森林和二叉树的转换,设森林 F=(T1,T2,Tn);T1=(root,t11,t12,t1m);,二叉树 B=(LBT,Node(root),RBT);,由于二叉树可以用二叉链表表示,为了使一般树也能用二叉链表表示,必须找出树与二叉树之间的关系。这样,给定一棵树,可以找到唯一的一棵二叉树与之对应。方法:对每个孩子进行从左到右的排序;在兄

31、弟之间加一条连线;对每个结点,除了左孩子外,去除其与其余孩子之间的联系;以根结点为轴心,将整个树顺时针转45度。,1、将树转换成二叉树的转换规则为:,树转换为二叉树,2、由森林转换成二叉树的转换规则为:,若 F=,则 B=;否则,由 ROOT(T1)对应得到 Node(root);由(t11,t12,t1m)对应得到 LBT;由(T2,T3,Tn)对应得到 RBT。,森林转换为二叉树,3、由二叉树转换为森林的转换规则为:,若 B=,则 F=;否则,由 Node(root)对应得到 ROOT(T1);由LBT 对应得到(t11,t12,,t1m);由RBT 对应得到(T2,T3,Tn)。,将二叉

32、树转换成树或森林的方法如下:1.若某结点是其双亲的左孩子,则把该结点的右孩子、右孩子的右孩子都与该结点的双亲结点用线连起来;2.删除原二叉树中所有的双亲结点与右孩子结点的连线.3.整理步骤1、2所得到的树或森林,使结构层次分明.,将二叉树转换为树或森林的另一种描述:,将二叉树转换为树或森林,若某结点是其双亲的左孩子,则把该结点的右孩子、右孩子的右孩子都与该结点的双亲结点用线连起来;,删除原二叉树中所有的双亲结点与右孩子结点的连线.,由此,树的各种操作均可对应二叉树的操作来完成。,应当注意的是,和树对应的二叉树,其左、右子树的概念已改变为:左是孩子,右是兄弟。,6.7树和森林的遍历,一、树的遍历

33、,二、森林的遍历,三、树的遍历的应用,树的遍历可有三条搜索路径:,按层次遍历:,先根(次序)遍历:,后根(次序)遍历:,若树不空,则先访问根结点,然后依次先根遍历各棵子树。,若树不空,则先依次后根遍历各棵子树,然后访问根结点。,若树不空,则自上而下自左至右访问树中每个结点。,A B C DE F G H I J K,先根遍历时顶点的访问次序:,A B E F C D G H I J K,后根遍历时顶点的访问次序:,E F B C I J K H G D A,层次遍历时顶点的访问次序:,A B C D E F G H I J K,B C DE F G H I J K,1森林中第一棵树的根结点;,

34、2森林中第一棵树的子树森林;,3森林中其它树构成的森林。,森林由三部分构成:,若森林不空,则访问森林中第一棵树的根结点;先序遍历森林中第一棵树的子树森林;先序遍历森林中(除第一棵树之外)其 余树构成的森林。,1.先序遍历,森林的遍历,即:依次从左至右对森林中的每一棵树进行先根遍历。,中序遍历,若森林不空,则中序遍历森林中第一棵树的子树森林;访问森林中第一棵树的根结点;中序遍历森林中(除第一棵树之外)其 余树构成的森林。,即:依次从左至右对森林中的每一棵树进行后根遍历。,树的遍历和二叉树遍历的对应关系?,先根遍历,后根遍历,树,二叉树,森林,先序遍历,先序遍历,中序遍历,中序遍历,设树的存储结构

35、为孩子兄弟链表,typedef struct CSNode Elem data;struct CSNode*firstchild,*nextsibling;CSNode,*CSTree;,一、求树的深度,二、输出树中所有从根到叶子的路径,三、建树的存储结构,int TreeDepth(CSTree T)if(!T)return 0;else h1=TreeDepth(T-firstchild);h2=TreeDepth(T-nextsibling);/TreeDepth,return(max(h1+1,h2);,一、求树的深度的算法:,二、输出树中所有从根到叶子的路径的算法:,A B C DE

36、 F G H I J K,例如:对左图所示的树,其输出结果应为:,A B EA B FA CA D G H IA D G H JA D G H K,void AllPath(Bitree T,Stack/if(T)/AllPath,/输出二叉树上从根到所有叶子结点的路径,void OutPath(Bitree T,Stack/while/OutPath,/输出森林中所有从根到叶的路径,三、建树的存储结构的算法:,和二叉树类似,不同的定义相应有不同的算法。,假设以二元组(F,C)的形式自上而下、自左而右依次输入树的各边,建立树的孩子-兄弟链表。,A,B,C,D,E,F,G,例如:,对下列所示树的

37、输入序列应为:,(#,A)(A,B)(A,C)(A,D)(C,E)(C,F)(E,G),A,B,C,D,(#,A),(A,B),(A,C),(A,D),(C,E),可见,算法中需要一个队列保存已建好的结点的指针。,void CreatTree(CSTree/所建为根结点 else/非根结点的情况/for/CreateTree,GetHead(Q,s);/取队列头元素(指针值)while(s-data!=fa)/查询双亲结点 DeQueue(Q,s);GetHead(Q,s);if(!(s-firstchild)s-firstchild=p;r=p;/链接第一个孩子结点else r-nextsi

38、bling=p;r=p;/链接其它孩子结点,6.8 哈 夫 曼 树 与 哈 夫 曼 编 码,最优树的定义 如何构造最优树 前缀编码,一、最优树的定义,树的路径长度定义为:树中每个结点的路径长度之和。,结点的路径长度定义为:从根结点到该结点的路径上 分支的数目。,1,2,4,5,3,6,7,PL=0+1+1+2+2+2+2=10,树的路径长度用PL表示。,1,2,4,5,C,6,7,PL=0+1+1+2+2+3+3=12,树的带权路径长度定义为:树中所有叶子结点的带权路径长度之和 WPL(T)=wklk(对所有叶子结点)。其中:Wk为树中每个叶子结点的权;Lk为每个叶子结点到根的路径长度。,例如

39、:,2,7 9,7,5,4,9,2,WPL(T)=72+52+23+43+92=60,WPL(T)=74+94+53+42+21=89,5,4,最优树,在所有含 n 个叶子结点、并带相同权值的 m 叉树中,必存在一棵其带权路径长度取最小值的树,称为“最优树”。,由原始数据生成森林 根据给定的n个权值 w1,w2,wn,构造 n 棵二叉树的集合 F=T1,T2,Tn,其中每棵二叉树中均只含一个带权值 为 wi 的根结点,其左、右子树为空树;,二、如何构造最优树,(1),(赫夫曼算法)以二叉树为例:,在 F 中选取其根结点的权值为最 小的两棵二叉树,分别作为左、右子树构造一棵新的二叉树,并 置这棵

40、新的二叉树根结点的权值 为其左、右子树根结点的权值之 和;,(2),从F中删去这两棵树,同时加入 刚生成的新树;,重复(2)和(3)两步,直至 F 中只 含一棵树为止。,(3),(4),例:给定权值7,5,2,4,构造赫夫曼树。,9,例:已知权值 W=5,6,2,9,7,构造赫夫曼树。,5,6,2,7,5,2,7,6,9,7,6,7,13,9,5,2,7,6,7,13,9,5,2,7,9,5,2,7,16,6,7,13,29,0,0,0,0,1,1,1,1,00,01,10,110,111,三、哈夫曼树的应用,1、判定树 在解决某些判定问题时,利用哈夫曼树可以得到最佳判定算法。例1 将学生百分

41、成绩按分数段分级的程序。若学生成绩分布是均匀的,可用图(a)二叉树结构来实现。,输入10000个数据,则需进行31500次比较。,(b),学生成绩分布不是均匀的情况:,以比例数为权构造一棵哈夫曼树,如(b)判断树所示。,再将每一比较框的两次比较改为一次,可得到(c)判定树。,输入10000个数据,仅需进行22000次比较。,2、前缀编码,“前缀编码”指的是,任何一个字符的编码都不是同一字符集中另一个字符的编码的前缀。,3、赫夫曼编码,利用赫夫曼树可以构造一种不等长的二进制编码,并且构造所得的赫夫曼编码是一种最优前缀编码,即使所传电文的总长度最短。,各字符编码是 T;A C S 00 01 10

42、 110 111上述电文编码:,方法:(1)用 2,4,2,3,3 作为叶子结点的权值生成一棵赫夫曼树,并将对应权值wi的叶子结点注明对应的字符;(2)约定左分支表示字符“0”,右分支表示字符1(3)从叶子结点开始,顺着双亲反推上去,直到根结点,路径上的0或1连接的序列就是结点对应的字符的二进制编码的逆序。,赫夫曼编码-利用赫夫曼树构造通讯中电文编码(前缀码)例:要传输的电文是CAS;CAT;SAT;AT要传输的字符集是 D=C,A,S,T,;每个字符出现的频率是W=2,4,2,3,3,注意:编码的总长度恰好为赫夫曼树的带权路径长。,构造赫夫曼树的算法,为了实现构造赫夫曼树的算法,设计哈夫曼树中每个结点类型如下:typedef struct char data;/*结点值*/float weight;/*权重*/int parent;/*双亲结点*/int lchild;/*左孩子结点*/int rchild;/*右孩子结点*/HTNode,*HuffmanTree;,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号