统计量与抽样分布 (2).ppt

上传人:牧羊曲112 文档编号:6332962 上传时间:2023-10-17 格式:PPT 页数:40 大小:470.50KB
返回 下载 相关 举报
统计量与抽样分布 (2).ppt_第1页
第1页 / 共40页
统计量与抽样分布 (2).ppt_第2页
第2页 / 共40页
统计量与抽样分布 (2).ppt_第3页
第3页 / 共40页
统计量与抽样分布 (2).ppt_第4页
第4页 / 共40页
统计量与抽样分布 (2).ppt_第5页
第5页 / 共40页
点击查看更多>>
资源描述

《统计量与抽样分布 (2).ppt》由会员分享,可在线阅读,更多相关《统计量与抽样分布 (2).ppt(40页珍藏版)》请在三一办公上搜索。

1、引例,1899年,戈塞特进入都柏林A.吉尼斯父子酿酒公司担任酿酒化学技师,从事统计和试验工作。他发现,供酿酒的每批麦子质量相差很大,而同一批麦子仲能抽样供试验的麦子又很少,每批样本在不同的温度下做式样其结果相差很大,这决定了不同批次和温度的麦子样本是不同的,不能进行样本合并,这样一来实际上取得的麦子样本不可能是大样本,只能是小样本。小样本得出的结果和正态分布有较大差异,特别是尾部比正态分布高大样本和小样本有什么差异?如何用样本推断总体?,统计方法,描述统计,推断统计,假设检验,所谓统计推断,就是根据概率论所揭示的随机变量的一般规律性,利用抽样调查所获得的样本信息,对总体的某些性质或数量特征进行

2、推断。参数估计 假设检验这两类问题的基本原理是一致的,只是侧重点不同而已。参数估计问题侧重于用样本统计量估计总体的某一未知参数;假设检验问题侧重于用样本资料验证总体是否具有某种性质或数量特征。,统计推断,由于统计推断是根据观察到的部分数据对总体作出推测,因此推测就不可能绝对准确,有一定的不确定性。这种不确定性的程度可以用概率的大小来表示。,总体与样本,统计学的重要意义就是用样本统计量的性质推断总体参数的特征。,第6章 统计量与抽样分布,主要内容,总体和样本的统计分布统计量抽样分布,第一节 总体和样本的统计分布,一、统计推断中的总体及总体分布总体的概念 总体是根据一定的目的确定的所要研究的事物的

3、全体,它是由客观存在的、具有某种共同性质的众多个体构成。总体中的各个单位称为个体。由引例:每批麦子 每批麦子的每单位出酒量的数值 编制变量的分布数列 实物总体 数值总体 分布总体,总体的含义可抽象为所感兴趣的变量及其分布。,第6章 统计量与抽样分布,二、统计推断中的样本及其性质 按照随机原则,通过观测或实验的方法所获得的总体中一部分个体的取值称为样本。每个个体的取值称为样本点或样品。样本是随机的,样本观测值是确定的。如果样本满足同分布、独立性(iid)则为简单随机样本。样本所包含的总体单位个数称为样本容量,一般用表示。在实际工作中,人们通常把30的样本称为大样本,而把n30的样本称为小样本。,

4、是一堆“杂乱无章”的数据,设 是来自总体 的样本,对样本的一些认识,是对总体进行推断的依据,包含了有关总体的“信息”,在观察前 是一组独立同分布r.v,在观察后 是一组具体的数据,总体X 随机变量N(,2),观察值 随机变量N(,2)的值,对象:某大学新生的身高,2、样本的联合分布,设 为来自总体 的样本,则样本的联合分布函数为,设 为来自总体 的样本,则样本的联合概率函数为,例,则样本的联合密度为,n,维正态分布,样本的联合分布,样本的联合概率函数,第二节 统计量,一、统计量与统计量的分布,设(X1,X2,Xn)是总体X的样本,则由样本(X1,X2Xn)构成的且不含任何未知参数的函数T(X1

5、,X2Xn)称为统计量。,例:设(X1,X2)是总体N(,2)的一个样本,其中 已知,未知参数,则下列哪个不是统计量:,1、统计量定义,推断统计研究的重点寻找统计量及其分布利用概率论对总体进行推断,统计量通常是随机变量,但统计量的观测值是确定的,没有随机性。比如,如果(x1,x2,xn)是样本(X1,X2,,Xn)的观测值,那么T(x1,x2,xn)为统计量T(X1,X2Xn)的观测值。则T(X1,X2Xn)是随机变量。统计量是随机变量,那么它应该有概率分布。统计量的分布也称抽样分布。统计量的分布不一定和总体分布一致。在统计推断中,一个重要的工作就是寻找统计量,导出统计量的抽样分布或渐近分布。

6、,2、常用统计量,设(X1,X2,,Xn)为总体X的样本,则,此外,还有,1、顺序统计量,(X1,X2,Xn)是总体X的一个简单随机样本,(x1,x2,xn)是一个样本观察值,将它由小到大的顺序排列,得到x(1)x(2)x(n),取x(i)作为X(i)的观测值,由此得到的统计量X(1),X(2),X(n)称为样本(X1,X2,Xn)的一组顺序统计量,X(i)称为第i个顺序统计量其中,最大顺序统计量X(n)=max X1,X2,Xn最小顺序统计量X(1)=min X1,X2,Xn,2、样本中位数,3、样本极差,R=X(n)-X(1),4、样本p阶分位数,其中,0p1,np取整数。,5、样本切尾均

7、值,第三节 抽样分布,正态分布 如果连续型随机变量X的密度函数为 则称随机变量X服从均值为,方差为2的正态分布,记为XN(,2)。如果一个正态分布的=0,=1,则称该正态布为标准正态分布,相应的随机变量称为标准正态随机变量,用Z表示,即ZN(0,1),相应的分布密度函数为,一般正态分布 与标准正态分布 的关系:若随机变量X服从正态分布N(,2),则随机变量 Z=服从标准正态分布,即ZN(0,1)。,第三节 抽样分布,一、分布,2(n)分布的概率密度:其中 为 函数 在 处的函数值,性质2:设 X(n1),Y(n2),且X与Y相互独立,则 X+Y(n1+n2)性质3:设 为X的样本,则 证:性质

8、4:设(n),则对任意实数x,有,5、2分布的自由度可以自由选择数值的变量个数。,自由度,一组数据中可以自由取值的数据的个数当样本数据的个数为 n 时,若样本均值x 确定后,只有n-1个数据可以自由取值,其中必有一个数据则不能自由取值例如,样本有3个数值,即x1=2,x2=4,x3=9,则 x=5。当 x=5 确定后,x1,x2和x3有两个数据可以自由取值,另一个则不能自由取值,比如x1=6,x2=7,那么x3则必然取2,而不能取其他值,例,由卡方分布的可加性有,则有该卡方分布自由度为2,且C=1/3,二、t 分布(学生分布),1定义 设XN(0,1),Y(n),且 X 与Y 独立,则称随机变

9、量服从自由度为 n 的 t 分布,记作 t t(n),2t(n)分布的概率密度:,3性质:t(n)分布的概率密度关于 y 轴对称,且,E(t)=0,D(t)=n/(n-2),4t(n)分布的上 分位点:设 t t(n),对于给定正数,称满足条件 的点 为 t(n)分布的上 分位点,且有,5.t分布自由度越小,分布的方差越大,分布比较平坦。当自由度较大时,方差较小,越接近标准正态分布。6.t分布的自由度由生成t分布的分母卡方分布随机变量的自由度决定。,三、F分布,2F(m,n)分布的概率密度为,4F(m,n)分布的上 分位点:设 FF(m,n),对于给定正数,称满足条件 的点 为F(m,n)分布

10、的上 分位点,且有,如F 0.01(10,15)=3.8.,6.3.4 抽样分布定理(正态总体统计量的分布),本节介绍来自正态总体的样本均值与样本方差的抽样分布这是参数估计与假设检验的基础,定理1 设 为来自总体 X 的简单随机样本,则,,样本均值与样本方差 相互独立,证明,且两者独立,由 t 分布的定义知,化简即可.,定理2,定理3,设总体,总体,且 X 与 Y 独立X1,X2,与Y1,Y2,分别为来自总体 X 与总体 Y 的样本,且这两组样本相互独立,则有,.,(ii)若,则,其中,(iii),解.由,即,得所求概率为,例1 从总体 N(52,6.32)中随机抽取一容量为 36 的样本,求样本均值 落在 50.8 到 53.8 之间的概率,例2 设 X1,X2,X10 为总体 N(0,0.09)的一个样本,求,解 由,则有,.,5、小结,两个最重要的统计量:,样本均值,样本方差,三个来自正态分布的抽样分布:,作业 P161:2,3,4,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号