连续时间信号的抽样与量化-信号与系统.ppt

上传人:牧羊曲112 文档编号:6351211 上传时间:2023-10-19 格式:PPT 页数:80 大小:1.40MB
返回 下载 相关 举报
连续时间信号的抽样与量化-信号与系统.ppt_第1页
第1页 / 共80页
连续时间信号的抽样与量化-信号与系统.ppt_第2页
第2页 / 共80页
连续时间信号的抽样与量化-信号与系统.ppt_第3页
第3页 / 共80页
连续时间信号的抽样与量化-信号与系统.ppt_第4页
第4页 / 共80页
连续时间信号的抽样与量化-信号与系统.ppt_第5页
第5页 / 共80页
点击查看更多>>
资源描述

《连续时间信号的抽样与量化-信号与系统.ppt》由会员分享,可在线阅读,更多相关《连续时间信号的抽样与量化-信号与系统.ppt(80页珍藏版)》请在三一办公上搜索。

1、第5章 连续时间信号的抽样与量化,5.2 时域抽样定理,5.4 利用内插从样本值重建信号,5.7 连续时间信号的量化,5.6 信号的截断与时窗,5.3 频率混叠效应和信号抽样频率的选择,5.1 引言,5.5 频域抽样定理,5.1 引言,连续时间信号在进入数字系统之前,有一个如何将模拟信号转化为数字信号的问题,即信号的数字采集,这种转化应是以不丢失模拟信号的信息为原则,本章基于这样的原则,讨论模拟信号数字采集的有关问题。研究如何从连续时间信号的离散时间样本不失真地恢复原来的连续时间信号。讨论与时域抽样完全对偶的频域抽样。研究如何对一个连续时间信号进行均匀量化问题。,上图是通常信号的数字采集与分析

2、、处理系统。模拟信号经抗混叠滤波器预处理,变成带限信号(这是为后面信号的抽样做准备的),经模数转换器后变成数字信号,在送入计算机或数字信号分析仪完成信号的分析和处理。如果需要,再由数模转换器将处理后的数字信号转换成模拟信号。,模数转换器的功能是将模拟信号先进行抽样,后对抽样信号进行量化和编码,从而完成模拟信号转换成数字信号的过程。抽样过程方框图如下图所示,其中为输入的连续时间信号,为周期的抽样脉冲序列,为抽样后的信号。,5.2 时域抽样定理,(a)(b)(c),1抽样信号,矩形脉冲序列抽样,限带信号,关系,频谱结构的数学表示,频谱结构,2举例说明抽样信号与原信号频谱的关系,3讨论 的影响,不变

3、,不变,因为,s,s,s,s,2,w,w,T,T,=,限带信号,1抽样信号,5.2.2 冲激序列抽样,2冲激抽样信号的频谱,3几点认识,理想低通滤波器,滤除高频成分,即可恢复原信号,由抽样信号恢复原信号,5.2.3 时域抽样定理,重建原信号的必要条件:,不满足此条件,就会发生频谱混叠现象。,奈奎斯特(Nyquist)抽样频率和抽样间隔,。,隔,是必要条件,或抽样间,抽样频率,即,m,s,m,s,2,1,2,f,T,f,f,隔”。,称为“奈奎斯特抽样间,是最大抽样间隔,2,1,m,s,f,T,=,特抽样频率”,称为“奈奎斯,是最低允许的抽样频率,2,m,s,f,f,=,5.3 频率混叠效应和信号

4、抽样频率的选择,(a)频率混叠效应(b)频率混叠时信号频谱的畸变,二是对被抽样的信号 预先进行抗混叠滤波处理,将非带限信号变成带限信号,然后按抽样定理抽样。后一种方法虽然使信号丢失了部分高频分量,但可以有效地保护信号 中低频分量将不因抽样而受到干扰。同时,也可以有效地减少抽样点数。,一是提高信号的抽样频率,,即缩小抽样周期,由于一般信号的高频分量是以大于频率,倒数衰减,提高抽样频率,但它是以抽取更多的数据为代价的。,减小频率混叠效应有两种途径:,一次方的,对减小频率混叠是很有效的,图5.3.2 抗混叠滤波器,从上述分析,当信号有效带宽 已知时,若取抗混叠滤波器截止频率,当滤波器具有-50-60

5、dB/倍频程衰减率,那么滤波后的信号以 抽样即可。,在实际工作中,选择信号抽样频率 或抽样周期 是一个很重要的问题。盲目地提高抽样频率,不但会给数据采集系统提出一系列苛刻的要求,而付出昂贵的设备经济代价,而且由于采集的数据量大,为后续的数据处理也带来许多困难,如分析处理工作量增大,分析、处理机存贮容量不够等。但是不适当地减小抽样频率,又会使已获得的信号产生信息丢失、畸变。,5.4 利用内插从样本值重建信号,所谓内插是一个在样本值之间插值的方法。利用内插从样本值重建信号也就是如何从抽样信号恢复连续时间信号的问题,它是重建某一个函数的过程,重建的结果可以是近似的,也可以是完全准确的。,一个理想低通

6、滤波器应对截止频率以下的所有频率成分都能够无失真地通过,而对于以上的频率成分全部衰减掉,即,理想内插,它的单位冲激响应为,设抽样信号经过低通滤波器的输出为,则该信号的频谱为,变换为时域为,由于,(5.4.7),所以,上式说明连续时间信号,可以展开成正交抽样函数,函数)的无穷级数,级数的系数等于抽样值,。并且为从抽样信号,恢复原连续信号,提供了一个抽样内插函数.,被恢复信号 在抽样点的值等于,即原信号 等于在相应抽样时刻 上的样本值,而在样本点之间的信号则是由各抽样值的内插函数波形叠加完成。所以,当 通过理想低通滤波器时,抽样序列的每一个抽样信号会产生一个响应,将这些响应叠加就可以完全恢复原连续

7、时间信号。,阶梯内插是指在两个抽样点间的任意时刻,恢复信号等于前一个抽样点,并不取决于任何将来值。阶梯内插得到的输出具有阶梯形状,是对原始信号的一种近似。实现阶梯内插的系统就是一个零阶保持系统。图示出了零阶保持框图和波形。,图零阶保持内插,5.4.2 零阶保持内插,由于经过零阶保持系统得到的输出信号 具有阶梯形状,并且 本身可以认为是一种对原信号的近似,是一种很粗糙的近似,因此零阶保持可以看作是在样本之间进行内插的一种形式,内插函数就是冲激响应。,它的幅频特性 和相频特性 曲线如图5.4.3所示。当 通过此补偿滤波器以后,即可恢复原来信号。从频域上解释,将 和 相乘就可得到。,图补偿低通特性,

8、另外,需要注意的是阶梯内插可以把分段常数信号完全地恢复出来。,线性内插就是把相邻的样本点用直线连接起来,也称为一阶保持。它是利用内插函数来产生抽样值之间 的线性近似,构成折线状波形。如图所示。采用线性内插的情况下,要重建的信号是连续的,尽管它的导数不一定连续。,图线性内插,线性内插,线性内插使用的内插函数是三角形脉冲,表达式为,(),它的傅立叶变换为,(),由式(5.4.17)可以看出一阶保持信号 频谱的基本特征是 频谱以 周期重复,但是要乘以。当 的频带受限且满足抽样定理时,为了复原 频谱,需要引入具有如下补偿特性的低通滤波器,5.5 频域抽样定理,频域抽样定理,5.6 信号的截断与时窗,按

9、频域抽样定理的要求,信号必须是时限的。否则,当对信号的频谱抽样时,将会出现时域波形的混叠,如图5.6.1所示。这种混叠现象也出现在对时限信号频谱抽样、抽样周期 的条件下(为时限信号持续的时间)。它是由于频率抽样不足产生的误差在时域中的反映,如图5.6.1(c)所示,由于波形的混叠,从抽样后信号 中已不可能恢复出原始信号 了。,图5.6.1 频域抽样引起的时域波形混叠,为了减小因频域抽样而产生的时域波形混叠,一种途径是提高抽样频率,即减小频率抽样周期,这意味着在频域要采集更多的数据。另一种途径是对原始信号 加以截取、变成时限信号,再按频域抽样定理对其抽样。图5.5.2(a)的信号,当从 将其尾部

10、截去,就是图5.5.2(b)所示的信号。此时,按抽样定理取 对它的频谱 抽样,便可消除时域上波形的混叠,从而可保证 区间上 波形可无失真地得到恢复。,值得注意的是,由于截断使得信号丢失了一部分信息,将截断信号 的频谱 同原始信号 的频谱 相比,如图5.5.2所示,这种信息的丢失反映到频域上,频谱的波形变“皱”了,故又称“皱波”效应。,图5.6.3 频率泄露效应,从(5.6.3)式看出,减小频率泄漏效应除了增大截断时窗窗宽之外,还可以选绎合适的时窗函数,使时窗函数的频谱,具有尽过能窄的主瓣(如图5.6.3(b)上对应 的部分)和相对主瓣具有幅值尽可能小的旁瓣,从而使截掉后信号 的频谱与原始信号

11、的频谱有最佳的近似。下面介绍时窗函数的设计。对一个时窗的设计,对主瓣和旁瓣的上述要求是相互矛盾的,即主瓣窄的时窗总是对应着幅值较大的旁瓣,而旁瓣幅值小的时窗又总是具有较宽的主瓣。所以选择和设计时窗时只能在主瓣和旁瓣要求方面进行某种折中。,一般地讲,矩形时窗并非是好的时窗,因为它具方较大幅值的旁瓣。在图上给出了几种常用的时窗。由于时窗函数均是偶函数,故在图上只画出了时窗和它频谱的右半边。,图5.6.4 典型时窗(a)时窗(b)时窗的频谱,5.7 连续时间信号的量化,在实际应用中,许多情况下首先把一个连续时间信号转换为一个离散时间信号,然后对其进行处理,处理完以后再把它转换为连续时间信号。这种处理

12、方式有一个显著的优点,就是可以借助于各种微处理机或任何面向离散时间信号的装置来完成。,连续时间输入信号 首先通过一个连续时间的前置取样滤波器,以保证输入信号 的最高频率限制在一定数值内,然后在模拟/数字转换器()中每隔(抽样周期)读出一次 的抽样值,对此抽样值进行量化。量化的过程是将此信号转换成离散时间离散幅度的多电平信号。从数学角度理解,量化是把一个连续幅度值的无限数集合映射到一个离散幅度值的有限数集合。在进行 转换时,必须把取样电压表示为某个规定的最小数量单位的整数倍。所取的最小数量单位叫做量化单位,用 表示。显然,数字信号最低有效位()的1所代表的数量大小就等于。把量化的结果用代码(可以

13、是二进制,也可以是其他进制)表示出来,这个过程称为编码。这些代码 就是转换的输出结果。,既然模拟电压是连续的,那么它就不一定能被 整除,因而量化过程不可避免地会引入误差,这种误差称为量化误差。将连续时间电压信号划分为不同的量化等级时通常有图5.7.1所示的两种方法。,图5.7.1 信号的量化,例如要求把01V的模拟电压信号转换成3位二进制代码,则最简单的方法是取,并规定凡数值在0 之间的模拟电压都当作对待,用二进制数表示;凡数值在 之间的模拟电压都当 作对待,用二进制数000表示,等等,如图5.11(a)所示。不难看出,这种量化方法可能带来的最大量化误差可达,即。,为了减小量化误差,通常采用图

14、5.11(b)的改进方法划分量化电平。在这种划分量化电平的方法中,取量化电平,并将输出代码000对应的模拟电压范围规定为0 V,即0,这样可以将最大量化误差减小到。因为将每个输出二进制代码所表示的模拟电压值规定为它所对应的模拟电压范围的中间值,所以最大量化误差自然不会超过。,当输入的模拟电压在正、负范围内变化时,一般要求采用二进制补码的形式编码,二进制的最高位通常为符号位。模拟信号的取样、保持、量化以及转化为二进制的过程总称为模数转换(转换)。当然量化越细,量化电平数越多,固然误差减小,但设备复杂,成本变高。一般情况下,信号的动态范围应与 转换器相适应,所用位数应满足精确度的要求。,图数字信号过程波形图,经转 换器后,在时间和幅度上都量化了的信号称为数字信号。它本质上是一序列的数,为此,我们用 来表示数字信号序列,自变量是n一个整型变量,它表示这个数在序列中的次序,如图5.12(d)所示,图中用一根线段来表示数值 的大小。通常,数字信号序列 按一定要求需要在数字处理器中进行加工。例如通过利用数字滤波器可以达到滤除掉所有不必要的频率成份,数字滤波器利用数字相加、再乘以常数和延时将输入数列按既定要求转换成输出数列,达到处理的目的。数字处理器可以是通用计算机,微型计算机,或专用和通用信号处理器。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号